Patents by Inventor Michael R. Colville

Michael R. Colville has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230332455
    Abstract: A power panel closure system may include a moveable panel and a panel driver energizable in a first direction associated with movement of the panel toward closing and energizable in a second direction associated with movement of the panel toward opening. A panel latch may have a primary latch state wherein the panel is held in a closed position. A control module may perform a panel opening sequence including energizing the panel driver in the first direction while the panel is being held in the closed position by the panel latch in the primary latch state, releasing the panel latch from the primary latch state, and energizing the panel driver in the second direction.
    Type: Application
    Filed: April 19, 2022
    Publication date: October 19, 2023
    Inventors: Charles Andrew Mallon, Michael R. Colville, Edward J. Zentera, JR., James Nikolas Nelsen, Ervin Colic
  • Patent number: 11752884
    Abstract: An operating system for a vehicle having an electric vehicle (EV) drivetrain and a plurality of electrically-powered accessories is described. A controller determines, via a navigation system, a target off-road trail segment, and characterizes the subject vehicle, ambient conditions, and the target off-road trail segment to determine an estimated consumption of electric energy for the vehicle to operate over the target off-road trail segment. The EV drivetrain and the electrically-powered accessories are controlled during operation of the vehicle on the off-road trail segment based upon the estimated consumption of electric energy for the subject vehicle. This is done to minimize a likelihood of a low SOC event for the DC power source for the trail segment and to avoid a low battery state at a location that is distal from a charging station.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: September 12, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Barak Hershkovitz, Ravid Erez, Ariel Telpaz, Nadav Baron, Shani Avnet, Michael R. Colville, Yuval Gilboa, Oleg Karp, Benjamin Perahya
  • Publication number: 20230146288
    Abstract: An operating system for a vehicle having an electric vehicle (EV) drivetrain and a plurality of electrically-powered accessories is described. A controller determines, via a navigation system, a target off-road trail segment, and characterizes the subject vehicle, ambient conditions, and the target off-road trail segment to determine an estimated consumption of electric energy for the vehicle to operate over the target off-road trail segment. The EV drivetrain and the electrically-powered accessories are controlled during operation of the vehicle on the off-road trail segment based upon the estimated consumption of electric energy for the subject vehicle. This is done to minimize a likelihood of a low SOC event for the DC power source for the trail segment and to avoid a low battery state at a location that is distal from a charging station.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 11, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Barak Hershkovitz, Ravid Erez, Ariel Telpaz, Nadav Baron, Shani Avnet, Michael R. Colville, Yuval Gilboa, Oleg Karp, Benjamin Perahya
  • Patent number: 9527495
    Abstract: A vehicle system includes an electric motor, an internal combustion engine, and a heating system configured to transfer heat from the internal combustion engine to a passenger compartment of the vehicle. The system includes a controller configured to operate the electric motor and the internal combustion engine according to one of a plurality of drive cycle profiles. The controller selects the drive cycle profile based on an ambient temperature. The drive cycle profiles include a first drive cycle profile that commands power from the electric motor until the battery system reaches a predetermined state of charge and subsequently commands power from the internal combustion engine and a second drive cycle profile that commands power from the internal combustion engine and subsequently commands power from the electric motor.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: December 27, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Andrew M. Zettel, Norman J. Weigert, Mark A. Manickaraj, Anthony H. Heap, Richard A. Marsh, Aniket Kothari, Michael R. Colville
  • Patent number: 9522671
    Abstract: A method can be used to control a hybrid vehicle and includes the following steps: (a) receiving, via a control module, an input; (b) determining, via the control module, whether the hybrid vehicle is traveling on a highway based, at least in part, on a vehicle speed and an output torque request; (c) commanding, via the control module, the hybrid powertrain to switch from a charge-depletion mode to a blended mode if the hybrid vehicle is traveling on a highway; and (d) commanding, via the control module, the hybrid powertrain to use energy from the energy storage device via the electric motor-generator so as to maintain a substantially constant target state of charge (SOC) discharge rate.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: December 20, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Travis James Trippel, Brett T. Muller, Michael R. Colville, Anthony H. Heap, Dean Christopher Degazio
  • Publication number: 20160167640
    Abstract: A vehicle system includes an electric motor, an internal combustion engine, and a heating system configured to transfer heat from the internal combustion engine to a passenger compartment of the vehicle. The system includes a controller configured to operate the electric motor and the internal combustion engine according to one of a plurality of drive cycle profiles. The controller selects the drive cycle profile based on an ambient temperature. The drive cycle profiles include a first drive cycle profile that commands power from the electric motor until the battery system reaches a predetermined state of charge and subsequently commands power from the internal combustion engine and a second drive cycle profile that commands power from the internal combustion engine and subsequently commands power from the electric motor.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Inventors: ANDREW M. ZETTEL, NORMAN J. WEIGERT, MARK A. MANICKARAJ, ANTHONY H. HEAP, RICHARD A. MARSH, ANIKET KOTHARI, MICHAEL R. COLVILLE
  • Patent number: 9302609
    Abstract: A number of illustrative variations may include a method of using sequential logic and vehicle sensors to produce a notification.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: April 5, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew J. Farah, Michael R. Colville
  • Patent number: 9278684
    Abstract: A method for controlling a hybrid vehicle includes the following: (a) receiving route data regarding a desired trip; (b) determining a load distribution along the desired trip based on the route data; (c) determining a load threshold based on the load distribution along the desired trip; (d) determining a charge depleting operating threshold based on a state of charge of the energy storage device; (e) commanding the powertrain to shift from a charge-depleting mode to a charge-sustaining mode when a load of the hybrid vehicle is equal to or greater than the load threshold; and (f) commanding the powertrain to shift from the charge-sustaining mode to the charge-depleting mode when the hybrid vehicle has traveled a distance that is greater than or equal to the charge-depleting operating threshold since the powertrain shifted from the charge-depleting mode to the charge-sustaining mode.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: March 8, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark A. Manickaraj, Andrew M. Zettel, Rick W. Szymczyk, Norman J. Weigert, Richard A. Marsh, Kevin A. Dietrich, Michael R. Colville
  • Publication number: 20150274063
    Abstract: A number of illustrative variations may include a method of using sequential logic and vehicle sensors to produce a notification.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 1, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: Andrew J. Farah, Michael R. Colville
  • Publication number: 20150239460
    Abstract: A method for controlling a hybrid vehicle includes the following: (a) receiving route data regarding a desired trip; (b) determining a load distribution along the desired trip based on the route data; (c) determining a load threshold based on the load distribution along the desired trip; (d) determining a charge depleting operating threshold based on a state of charge of the energy storage device; (e) commanding the powertrain to shift from a charge-depleting mode to a charge-sustaining mode when a load of the hybrid vehicle is equal to or greater than the load threshold; and (f) commanding the powertrain to shift from the charge-sustaining mode to the charge-depleting mode when the hybrid vehicle has traveled a distance that is greater than or equal to the charge-depleting operating threshold since the powertrain shifted from the charge-depleting mode to the charge-sustaining mode.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mark A. Manickaraj, Andrew M. Zettel, Rick W. Szymczyk, Norman J. Weigert, Richard A. Marsh, Kevin A. Dietrich, Michael R. Colville
  • Publication number: 20150232084
    Abstract: A method can be used to control a hybrid vehicle and includes the following steps: (a) receiving, via a control module, an input; (b) determining, via the control module, whether the hybrid vehicle is traveling on a highway based, at least in part, on a vehicle speed and an output torque request; (c) commanding, via the control module, the hybrid powertrain to switch from a charge-depletion mode to a blended mode if the hybrid vehicle is traveling on a highway; and (d) commanding, via the control module, the hybrid powertrain to use energy from the energy storage device via the electric motor-generator so as to maintain a substantially constant target state of charge (SOC) discharge rate.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 20, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Travis James Trippel, Brett T. Muller, Michael R. Colville, Anthony H. Heap, Dean Christopher Degazio
  • Patent number: 9002568
    Abstract: A method for conditioning one or more aspects of a vehicle, where a user may customize their vehicle by providing desired departure times and conditioning preferences so that the vehicle automatically wakes up, performs the requested conditioning, and is ready for operation by the requested departure time. Some examples of potential conditioning events include activating: a heated or cooled seat, a heated steering wheel, a heated engine block, a heated mirror, a cabin heating ventilation and air conditioning (HVAC) system, a heating or cooling element for a battery pack, a heating or cooling element for a battery charger, and a heating or cooling element for a fuel cell, to name a few.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 7, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Reena L. Datta, Kevin S. Kidston, Michael R. Colville
  • Patent number: 8887845
    Abstract: A system for controlling airflow through an under-hood compartment of a vehicle body includes a stow-away air dam assembly disposed on the body and configured to control the airflow between the body and a road surface from outside the vehicle to the under-hood compartment. The air dam assembly includes a retractable portion and a drive shaft configured to shift the retractable portion between a stowed position and a deployed position. The retractable portion is set at a first height in the stowed position and at a second height in the deployed position, wherein the first height is greater than the second height relative to the road surface. The air dam assembly also includes an actuator configured to operate the driveshaft. The system additionally includes a controller configured to regulate the actuator. A vehicle employing the system is also disclosed.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Stephen S. McDonald, Michael R. Colville
  • Publication number: 20140076645
    Abstract: A system for controlling airflow through an under-hood compartment of a vehicle body includes a stow-away air dam assembly disposed on the body and configured to control the airflow between the body and a road surface from outside the vehicle to the under-hood compartment. The air dam assembly includes a retractable portion and a drive shaft configured to shift the retractable portion between a stowed position and a deployed position. The retractable portion is set at a first height in the stowed position and at a second height in the deployed position, wherein the first height is greater than the second height relative to the road surface. The air dam assembly also includes an actuator configured to operate the driveshaft. The system additionally includes a controller configured to regulate the actuator. A vehicle employing the system is also disclosed.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Stephen S. McDonald, Michael R. Colville
  • Publication number: 20110153140
    Abstract: A method for conditioning one or more aspects of a vehicle, where a user may customize their vehicle by providing desired departure times and conditioning preferences so that the vehicle automatically wakes up, performs the requested conditioning, and is ready for operation by the requested departure time. Some examples of potential conditioning events include activating: a heated or cooled seat, a heated steering wheel, a heated engine block, a heated mirror, a cabin heating ventilation and air conditioning (HVAC) system, a heating or cooling element for a battery pack, a heating or cooling element for a battery charger, and a heating or cooling element for a fuel cell, to name a few.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Reena L. Datta, Kevin S. Kidston, Michael R. Colville