Patents by Inventor Michael R. McNeely

Michael R. McNeely has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100240022
    Abstract: The technology described in this disclosure is a combination of controlled and precise ‘reagent delivery’ integrated together with controlled liquid flow through a sample processing device used for generating a desired chemical or biological reaction.
    Type: Application
    Filed: June 22, 2007
    Publication date: September 23, 2010
    Inventor: Michael R. McNeely
  • Publication number: 20040109793
    Abstract: A three-dimensional microfluidic device (100) formed from a plurality of substantially planar layers (101, 102, 103) sealed together is disclosed
    Type: Application
    Filed: August 7, 2003
    Publication date: June 10, 2004
    Inventors: Michael R McNeely, Mark Spute, Nils Adey
  • Patent number: 6637463
    Abstract: Methods and apparatus are presented for controlling fluid flow through flow paths with pressure gradient fluid control. Passive fluid flow barriers may be used to act as valves, thereby allowing the flow of fluids through flow paths to be regulated so as to allow fluids to be introduced via a single channel and subsequently split into multiple channels. Flow through the flow paths can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. Each flow path may have multiple segments, at least one of which is designed to balance the pressure drops of the flow paths to provide uniform flow of fluids through the flow paths. The configurations of the wells may also be modified by adding vents or flow dividers to enhance fluid flushing and gas removal capability.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: October 28, 2003
    Assignee: BioMicro Systems, Inc.
    Inventors: Ming Lei, Nils B. Adey, Michael R. McNeely
  • Patent number: 6615856
    Abstract: A method of controlling fluid flow within a microfluidic circuit using external valves and pumps connected to the circuit is disclosed. The external valves and pumps, which are not a part of the microfluidic substrate, control fluid pumping pressure and the displacement of air out of the fluid circuit as fluid enters into the circuit. If a valve is closed, air cannot be displaced out of circuit, which creates a pneumatic barrier that prevents fluid from advancing within the circuit (under normal operating pressures). Applications of this method of fluid control are explained.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: September 9, 2003
    Assignee: BioMicro Systems, Inc.
    Inventors: Michael R. McNeely, Mark K. Spute
  • Patent number: 6607907
    Abstract: A method and system are disclosed for manipulating the flow of gases into and out of a microfluidic circuit to regulate pressure within the circuit or to provide for the delivery of gases to or removal of gases from the circuit. Pressure within the microfluidic circuit may be increased or decreased to modify physical or chemical properties of fluid within the circuit, or to modify reaction kinetics. Gaseous reactants may be added to the circuit, and reaction products or excess reactant gases may be removed the circuit according to the invention. Warm or cool air or other gas may be flowed over liquid reactants within the circuit to perform a warming or cooling function. Various biochemical reactions or processes, including for example polymerase chain reaction (PCR) and ligand-receptor binding, may be performed with the use of the inventive method and system.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: August 19, 2003
    Assignee: BioMicro Systems, Inc.
    Inventors: Michael R. McNeely, Mark K. Spute
  • Patent number: 6601613
    Abstract: Methods of controlling fluid flow through microchannels by use of passive valves or stopping means in the microchannels is presented. The passive valves act as pressure barriers impeding flow of solution past the stopping means until enough force is built up to overcome the force of the pressure barrier. Well planned use of such stopping means acting as passive valves allows the flow of fluids through microchannels to be regulated so as to allow fluids to be mixed or diluted after being introduced via a single channel, or to be split into multiple channels without the need for individual pipetting. Flow through the multiple channels can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. The filling of sister wells or chambers in this manner allows all wells or chambers to undergo reactions in unison. The use of air ducts to prevent trapping of air in the microchannels is also presented.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: August 5, 2003
    Assignee: BioMicro Systems, Inc.
    Inventors: Michael R. McNeely, Arnold R. Oliphant, Mark K. Spute
  • Patent number: 6591852
    Abstract: Methods and apparatus for controlling fluid flow through microchannels by use of passive valves or stopping means comprised of abrupt microchannel widenings in the microchannels are presented. Such passive fluid flow barriers create pressure barriers impeding flow of solution past the passive fluid flow barriers until enough force is built up to overcome the force of the pressure barrier. Use of such stopping means acting as passive barriers or valves allows the flow of fluids through microchannels to be regulated so as to allow fluids to be mixed or diluted after being introduced via a single channel, or to be split into multiple channels without the need for individual pipetting. Flow through the multiple channels can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. The filling of sister wells or chambers in this manner allows all wells or chambers to undergo reactions in unison.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: July 15, 2003
    Assignee: BioMicro Systems, Inc.
    Inventors: Michael R. McNeely, Mark K. Spute, Arnold R. Oliphant
  • Publication number: 20020075363
    Abstract: A method and system are disclosed for manipulating the flow of gases into and out of a microfluidic circuit to regulate pressure within the circuit or to provide for the delivery of gases to or removal of gases from the circuit. Pressure within the microfluidic circuit may be increased or decreased to modify physical or chemical properties of fluid within the circuit, or to modify reaction kinetics. Gaseous reactants may be added to the circuit, and reaction products or excess reactant gases may be removed the circuit according to the invention. Warm or cool air or other gas may be flowed over liquid reactants within the circuit to perform a warming or cooling function. Various biochemical reactions or processes, including for example polymerase chain reaction (PCR) and ligand-receptor binding, may be performed with the use of the inventive method and system.
    Type: Application
    Filed: May 15, 2001
    Publication date: June 20, 2002
    Inventors: Michael R. McNeely, Mark K. Spute
  • Publication number: 20020036018
    Abstract: Methods of controlling fluid flow through microchannels by use of passive valves or stopping means in the microchannels is presented. The passive valves act as pressure barriers impeding flow of solution past the stopping means until enough force is built up to overcome the force of the pressure barrier. Well planned use of such stopping means acting as passive valves allows the flow of fluids through microchannels to be regulated so as to allow fluids to be mixed or diluted after being introduced via a single channel, or to be split into multiple channels without the need for individual pipetting. Flow through the multiple channels can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. The filling of sister wells or chambers in this manner allows all wells or chambers to undergo reactions in unison. The use of air ducts to prevent trapping of air in the microchannels is also presented.
    Type: Application
    Filed: September 27, 2001
    Publication date: March 28, 2002
    Inventors: Michael R. McNeely, Arnold R. Oliphant, Mark K. Spute
  • Publication number: 20020033193
    Abstract: A method of controlling fluid flow within a microfluidic circuit using external valves and pumps connected to the circuit is disclosed. The external valves and pumps, which are not a part of the microfluidic substrate, control fluid pumping pressure and the displacement of air out of the fluid circuit as fluid enters into the circuit. If a valve is closed, air cannot be displaced out of circuit, which creates a pneumatic barrier that prevents fluid from advancing within the circuit (under normal operating pressures). Applications of this method of fluid control are explained.
    Type: Application
    Filed: August 3, 2001
    Publication date: March 21, 2002
    Inventors: Michael R. McNeely, Mark K. Spute
  • Patent number: 6296020
    Abstract: Methods of controlling fluid flow through microchannels by use of passive valves or stopping means in the microchannels is presented. The passive valves act as pressure barriers impeding flow of solution past the stopping means until enough force is built up to overcome the force of the pressure barrier. Well planned use of such stopping means acting as passive valves allows the flow of fluids through microchannels to be regulated so as to allow fluids to be mixed or diluted after being introduced via a single channel, or to be split into multiple channels without the need for individual pipetting. Flow through the multiple channels can be regulated to allow a series of sister wells or chambers to all fill prior to the fluid flowing beyond any one of the sister wells or chambers. The filling of sister wells or chambers in this manner allows all wells or chambers to undergo reactions in unison. The use of air ducts to prevent trapping of air in the microchannels is also presented.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: October 2, 2001
    Assignee: BioMicro Systems, Inc.
    Inventors: Michael R. McNeely, Arnold R Oliphant, Mark K. Spute
  • Patent number: 6066361
    Abstract: A method of coating a surface of a filament. In particular, the invention rotates a member (13) about a first axis (54), which will rotate a tubular member (16), which is rotatably coupled to the rotating member at an angle to the first axis, through a plane and about a longitudinal axis (56) of the tubular member that is co-planer to the plane. This is done to assist in the depositing of a uniform material onto the filament that extends through the tubular member and through a deposition area (40). It is important for the method to maintain the deposition area at an intersection of the first axis, longitudinal axis and plane, while the filament is being rotated in step. The method provides for adjusting the deposition area to expose a different length of the filament to the deposition of material thereon.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: May 23, 2000
    Assignee: Sarcos L.C.
    Inventors: Stephen C. Jacobsen, Michael R. McNeely, David L. Wells
  • Patent number: 6063200
    Abstract: A fixture apparatus for material deposition or processing on a long, flexible, nonplanar, filamentary substrate has a tubular member for holding the filamentary substrate rotatably disposed on a base. An opening is formed in the tubular member through which material is deposited on the surface of the filamentary substrate. Moveable tubes are each slidingly disposed in the tubular member on either side of the opening. The tubes and/or the tubular member hold the filamentary substrate on both sides of a deposition area on the substrate to maintain the straight configuration of the long, flexible, filamentary substrate. The tubes and/or tubular member also physically masks the filamentary substrate to prevent material deposition outside the deposition area on the substrate. The base has a circular path and a rotating member. A wheel is coupled to one side of the tubular member and is rotatably disposed on the circular path of the base.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: May 16, 2000
    Assignee: Sarcos L.C.
    Inventors: Stephen C. Jacobsen, Michael R. McNeely, David L. Wells