Patents by Inventor Michael Rindler

Michael Rindler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7811662
    Abstract: Short fibers in a solder or a welding material often do not have the desired strength. The invention uses fiber mats (13) which have been introduced onto a surface (10) or into a recess (7) of a metallic component.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 12, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Steffen Walter
  • Patent number: 7797179
    Abstract: A system and method for planning outages for a power generation installation comprising a gas turbine power plant. The system and method utilizes a computer to receive requests from users to create maintenance plans for the power plant by generating templates, applying the templates to a database containing gas turbine data for the power generation installation; and receiving data from users to create maintenance package plans. Users can select either modular or turnkey maintenance plans. Modular maintenance package options enable a user to specifically select and obtain price quote information for parts and technicians who perform the maintenance tasks, and to specify particular shift options for the technicians.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: September 14, 2010
    Assignees: Siemens Corporation, Siemens Aktiengesellschaft
    Inventors: Amit Chakraborty, Andre Werner, Venkatraman Gurumurthi, Ammaiappan Balasubramanian, Robin Hoeher, Michael Rindler, Michael Lange
  • Publication number: 20100212541
    Abstract: The invention relates to a material composition that is used for producing a coating for a component, especially a turbine component, which is made of a metallic basic material, i.e. a metal or a metal alloy. Said material composition comprises a matrix material for forming a basic coating matrix and at least one filler for adjusting desired coating proportions or coating characteristics. The matrix material can be provided especially with basic glass ceramic properties.
    Type: Application
    Filed: May 5, 2010
    Publication date: August 26, 2010
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach, Raymond Ullrich
  • Publication number: 20100189920
    Abstract: In a method for producing a component (20) with a coating (24) containing nanoparticles (21), it is provided that, in order to introduce the nanoparticles (21) into the coating (24), a film (19) with the dispersely distributed nanoparticles (21) is applied to the surface (22) to be coated, which decomposes with incorporation of the nanoparticles (21) during the actual coating operation and is thereby not incorporated into the layer.
    Type: Application
    Filed: June 20, 2007
    Publication date: July 29, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 7744351
    Abstract: The invention relates to a material composition that is used for producing a coating for a component, especially a turbine component, which is made of a metallic basic material, i.e. a metal or a metal alloy. Said material composition comprises a matrix material for forming a basic coating matrix and at least one filler for adjusting desired coating proportions or coating characteristics. The matrix material can be provided especially with basic glass ceramic properties. The inventive material composition is characterized in that the matrix material and/or the filler contains nanoparticles.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 29, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach, Raymond Ullrich
  • Patent number: 7740905
    Abstract: The invention relates to a method of, and a nozzle arrangement for, spraying cold gas. The nozzle arrangement has a first nozzle and a second nozzle, which is arranged within the first nozzle. The first nozzle is fed a gas which optionally contains particles. The second nozzle is fed a particle-containing gas. The particles are applied to a surface of the substrate by means of the gases.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: June 22, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20100072073
    Abstract: A method for the electrochemical application or removal of a coating of components (1) is made available, in which the component (1) serves as an electrode and in which, between the component (1) and the counterelectrode (3), an electrical field is built up which leads to the deposition of a coating material dissolved in an electrolyte or to the removal of a coating material (11) located on the component surface (2). During deposition or during removal, the component (1) is covered by structures (5) consisting of an electrically insulating material.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 25, 2010
    Inventors: Rene Jabado, Jens Dahi Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20100047592
    Abstract: The turbine parts, when they are used, form oxide layers which by the undesirable rapid growth thereof generate the damage of the parts substrate. The inventive method consists in depleting the part in an element in such a way that the oxide layer is reduced.
    Type: Application
    Filed: October 18, 2005
    Publication date: February 25, 2010
    Inventors: Rene Jabado, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler
  • Publication number: 20100035084
    Abstract: A method for producing a cast metal piece and a cast metal piece are provided. An information element includes at least one piece of information. The information element is produced from a magnetizable material and the information is deposited n the magnetizable material and is cast into the information element during casting of the price, the casting temperature being above the Curie temperature of the magnetizable material of the information element.
    Type: Application
    Filed: June 19, 2007
    Publication date: February 11, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursua Krüger, Daniel Körtvelyessy, Richard Matz, Ralph Reiche, Michael Rindler, Steffen Walter
  • Publication number: 20100032619
    Abstract: In a method for producing a particle (10) containing functional layer (310, 400, 600), nanoparticles are introduced into the functional layer material (320, 410, 610), the nanoparticles having a particle core (20) and a particle shell (30) surrounding the particle core. The material (K) of the particle core has a higher chemical activity than that of the particle shell and the material (M) of the particle shell allows diffusion of the material of the particle core through the particle shell into the functional layer material.
    Type: Application
    Filed: September 14, 2006
    Publication date: February 11, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20100025262
    Abstract: The invention relates inter alia to a method for removing a protective coating from a component, especially a turbine blade. According to the invention, the protective coating is removed, using mechanical shock waves having a shock wave repetition rate below 20 kHz.
    Type: Application
    Filed: June 19, 2007
    Publication date: February 4, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 7631816
    Abstract: The cold spraying process according to the invention uses cold gas streams whose properties (temperature (T), particle density (?), pressure (p), particle velocity (v)) are variably changed such that they can be adapted to the desired properties of the coatings.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: December 15, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20090306289
    Abstract: A powder can be produced by immersing microparticles (2) in a first solution (4) which contains coupling molecules (5), and then in a second solution (10) which contains the nanoparticles (12), thereby producing microparticles (2) with nanoparticles (12) attached thereto. The particles form powder particles (14) which allow nanoparticles (12) that are smaller than approximately 5 [mu] to be applied to a component by cold gas spraying.
    Type: Application
    Filed: September 27, 2007
    Publication date: December 10, 2009
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20090297701
    Abstract: A method of repairing a component, in particular a gas turbine component, which is produced from a base material with an oriented microstructure, comprises the steps of: cleaning the repair site, filling the repair site with a filling material corresponding to the composition of the base material, carrying out a heat treatment in the region of the filled repair site, wherein the filling material has micro- and/or nano-scale particles, during the filling of the repair site measures which prevent the oxidation of the filling material are taken, an the temperatures and holding times of the heat treatment are set appropriately for the composition of the filling material and of the base material of the component in such a way that an epitaxial attachment of the filling material to the surrounding bas material takes place.
    Type: Application
    Filed: September 27, 2006
    Publication date: December 3, 2009
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Michael Ott, Ralph Reiche, Michael Rindler, Rolf Wilkenhöner
  • Publication number: 20090238693
    Abstract: There is described a substrate with a coating; the coating contains a coating matrix in whose matrix structure multilayered and/or encapsulated nanoparticles are arranged and release a dye when a limit temperature is exceeded the first time and/or trigger a color reaction which causes the color of the coating to change irreversibly.
    Type: Application
    Filed: September 27, 2006
    Publication date: September 24, 2009
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20090208344
    Abstract: There is described a method wherein through holes of a wall are treated on a inside, and wherein one respective pole electrode is assigned to each through hole that is to be processed.
    Type: Application
    Filed: September 16, 2005
    Publication date: August 20, 2009
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Rene Jabado, Uwe Kaden, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach, Peter Tiemann, Iris Oltmanns
  • Publication number: 20090202814
    Abstract: Prior art protective layers can exercise their protecting function because they are depleted in a specific element which forms a protective oxide, or which is used as sacrificial material. When said material has been consumed, the protecting function can no longer be provided. The invention is characterized in that it consists in using powder particles comprising a reserve of the consumed material, which is delivered in delayed manner. Therefor, the material is enclosed in an envelope.
    Type: Application
    Filed: January 30, 2006
    Publication date: August 13, 2009
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach
  • Publication number: 20090155461
    Abstract: The invention relates to a method of, and a nozzle arrangement for, spraying cold gas. The nozzle arrangement has a first nozzle and a second nozzle, which is arranged within the first nozzle. The first nozzle is fed a gas which optionally contains particles. The second nozzle is fed a particle-containing gas. The particles are applied to a surface of the substrate by means of the gases.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 18, 2009
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Kruger, Daniel Kortvelyessy, Volkmar Luthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20090092498
    Abstract: The invention relates to a component for arrangement in the duct of a turbine engine. The component is provided with a coating, which has a surface structure with scales which overlap each other in the direction of flow of the turbine engine. The invention also relates to a spraying method for generating a coating on a component.
    Type: Application
    Filed: January 10, 2007
    Publication date: April 9, 2009
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Kruger, Daniel Kortvelyessy, Ralph Reiche, Michael Rindler
  • Publication number: 20090047444
    Abstract: The invention relates to a method for producing a layer (110) having nanoparticles (40), on a substrate (100). The invention is based on the object of specifying a method for producing a layer containing nanoparticles, which method can be carried out particularly easily and nevertheless offers a very wide degree of freedom for the configuration and the composition of the layer to be produced. According to the invention, this object is achieved in that nanoparticles (40) are released and a nanoparticle stream (50) is produced in a first process chamber (10), the nanoparticle stream (50) is passed into a second process chamber (80), and the nanoparticles (40) are deposited on the substrate (100) in the second process chamber (80).
    Type: Application
    Filed: July 3, 2006
    Publication date: February 19, 2009
    Inventors: Rene Jabado, Ursus Kruger, Daniel Kortvelyessy, Volkmar Luthen, Ralph Reiche, Michael Rindler