Patents by Inventor Michael S. Bittar

Michael S. Bittar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9239402
    Abstract: Various embodiments include apparatus and methods to make resistivity measurements in a borehole using tool having an array of electrodes operable to provide focused currents and measure corresponding voltages to determine resistivity. Tools can be configured with a main electrode having a number of spaced apart electrodes within the main electrode such that the spaced apart electrodes are arranged azimuthally with respect to an axis of the tool. Generation of current from the spaced apart electrodes and control of current from additional electrodes on each side of the main electrode can provide for focused measurements. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: January 19, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Shanjun Li, Michael S. Bittar
  • Patent number: 9239403
    Abstract: In various embodiments, apparatus and methods are provided to determine formation resistivity associated with a well. Measurements taken using sub-arrays of a tool at different distances of investigation can be used to determine formation resistivity, where the sub-arrays are arranged to make azimuthal related measurements. Separations readings related to resistivity can be generated from signals received from different directions and can be analyzed to characterize validity of a measurement reading. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 19, 2016
    Assignee: Hallibburton Energy Services, Inc.
    Inventors: Michael S. Bittar, Roland Edward Chemali
  • Publication number: 20150369952
    Abstract: Various embodiments include apparatus and methods to determine true formation resistivity. Such apparatus and methods may use techniques to effectively reduce or eliminate polarization horn effects at boundaries between formations of different resistivity. The techniques may use combinations of geosignals and adjustments of measurement data to evaluate true formation resistivity for formation layers investigated. Such techniques and associated analysis may be conducted real time. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: January 30, 2013
    Publication date: December 24, 2015
    Inventors: Hsu-Hsiang Wu, Michael S. Bittar
  • Publication number: 20150369950
    Abstract: Electromagnetic resistivity logging systems and methods yielding formation anisotropy and dip from a signal set that closely approximates the response of a idealized tool. One illustrative method embodiment derives from an azimuthally-sensitive tool's measurements a full set of orthogonal direct couplings (Vxx, Vyy, Vzz) and a cross-coupling sum (Vxz+Vzx) or (Vyz+Vzy). These values are converted into a signal set as a function of borehole position, the set including: a first signal representing a ratio between Vzz coupling components at different spacing distances, a second signal representing a ratio between Vxx and Vzz coupling components, a third signal representing a ratio between Vyy and Vzz coupling components, a fourth signal representing a ratio between Vxx and Vyy coupling components, and a fifth signal representing a ratio between a cross-coupling sum and a sum of the direct couplings. From this signal set, formation parameters can be accurately determined by inversion.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 24, 2015
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Hsu-Hsiang Wu, Michael S. Bittar, Burkay Donderici
  • Publication number: 20150322774
    Abstract: Disclosed herein are electromagnetic logging systems and methods that provide a set of signals that robustly approximate the response of a model tool employing orthogonal triads of point-dipole antennas. One illustrative method embodiment obtains an azimuthally sensitive electromagnetic logging tool's signal measurements as a function of position in a borehole, the tool having at least two spacing distances (d1, d2) between transmit and receive antennas. Orthogonal direct coupling measurements (Vxx, Vyy, Vzz) are derived from the signal measurements and converted into a set of robust signals, the set including: a ratio between Vzz coupling components at different spacing distances, a ratio between Vxx and Vzz coupling components, a ratio between Vyy and Vzz coupling components, and a ratio between Vxx and Vyy coupling components. The set may include an additional robust signal having a ratio between a sum of cross-coupling components Vxz+Vzx or Vyz+Vzy and a sum of orthogonal direct coupling components.
    Type: Application
    Filed: June 25, 2012
    Publication date: November 12, 2015
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Hsu-Hsiang Wu, Burkay Donderici, Michael S. Bittar
  • Publication number: 20150308980
    Abstract: Various embodiments include apparatus and methods to inspect casing defects in a pipe such as a casing associated with a drilling operation. Electrical connectors contacting the inside wall of the pipe can be used to generate a current in the pipe. Magnetic fields correlated to an anomaly or anomalies that alter the current can be sensed to identify the presence of the anomaly or anomalies. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: December 31, 2012
    Publication date: October 29, 2015
    Inventors: Michael S. Bittar, Jing Li
  • Patent number: 9157315
    Abstract: Disclosed herein are electromagnetic resistivity logging systems and methods that employ an antenna configuration having at most two transmitter or receiver antenna orientations that rotate relative to the borehole. The measurements made by this reduced-complexity antenna configuration enable the determination of at least seven components of a coupling matrix, which may be determined using a linear system of equations that express the azimuthal dependence of the measurements. For increased reliability, measurement averaging may be performed in azimuthally spaced bins. The coupling matrix components can then be used as the basis for determining logs of various formation parameters, including vertical resistivity and anisotropy.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: October 13, 2015
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Michael S. Bittar, Guoyu (David) Hu
  • Publication number: 20150285070
    Abstract: An apparatus for measuring a resistivity of a formation comprising an instrumented bit assembly coupled to a bottom end of the apparatus. At least one first electromagnetic wave antenna transmits an electromagnetic wave signal into the formation. At least one second electromagnetic wave antenna located on the instrumented bit assembly and longitudinally spaced apart from the at least one first electromagnetic wave antenna receives the electromagnetic wave signal transmitted through the formation. Electronic circuitry is operably coupled to the at least one second electromagnetic wave antenna to process the received signal to determine a resistivity of the formation proximate the instrumented bit assembly.
    Type: Application
    Filed: June 16, 2015
    Publication date: October 8, 2015
    Inventors: Michael S. Bittar, Vadim Minosyan, Gary E. Weaver
  • Publication number: 20150276970
    Abstract: A first broadband magnetic field is induced at a first transmitter position in a well bore drilled through a formation. A first formation magnetic field induced by the first broadband magnetic field is detected at a first receiver position. A second formation magnetic field induced by the first broadband magnetic field is detected at a second receiver position. A second broadband magnetic field is induced at a second transmitter position in the well bore. A third formation magnetic field induced by the second broadband magnetic field is detected at the first receiver position. A fourth formation magnetic field induced by the second broadband magnetic field is detected at the second receiver position. A formation property is computed using a function of the first, second, third, and fourth formation magnetic fields, wherein the function reduces the effect of a casing on the computation of the formation property.
    Type: Application
    Filed: November 21, 2012
    Publication date: October 1, 2015
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dagang Wu, Michael S. Bittar
  • Publication number: 20150240631
    Abstract: A disclosed fracture characterization method includes: collecting three-dimensional resistivity measurements of a volume surrounding an open borehole; analyzing the measurements to determine parameters describing fractures in the volume; and providing a report to a user based at least in part on said parameters. A fluid with a contrasting resistivity is employed to make the fractures detectable by a directional electromagnetic logging tool in the borehole. Illustrative parameters include fracture direction, height, extent, length, and thickness. The resistivity measurements can be augmented using a borehole wall image logging tool. Also disclosed are fracturing methods that include: positioning a directional electromagnetic logging tool proximate to a formation; fracturing the formation; monitoring fracture progression with said tool; and halting the fracturing when measurements by said tool indicate that a predetermined set of criteria have been satisfied.
    Type: Application
    Filed: May 11, 2015
    Publication date: August 27, 2015
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Michael S. Bittar, Clive D. Menezes
  • Patent number: 9115569
    Abstract: Methods and apparatus for detecting nearby conductors such as pipes, well casing, etc., from within a borehole. A nearby casing string can be detected by transmitting an electromagnetic signal from a transmit antenna on a downhole logging tool and measuring a parallel response signal with a first receive antenna parallel to the transmit antenna and a perpendicular response signal with a second receive antenna perpendicular to the transmit antenna, both receive antennas on the downhole logging tool. As the tool rotates, the transmitting and measuring are repeated to determine the azimuthal dependence of the parallel and perpendicular response signals. The azimuthal dependence is analyzed to determine a diagonal component of said azimuthal dependence for each response signal. Distance to a casing string can be estimated using the diagonal component of each response signal. At least one of the antennas is preferably tilted.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: August 25, 2015
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Yumei Tang, Michael S. Bittar, Shanjun Li
  • Patent number: 9085959
    Abstract: An apparatus for measuring a resistivity of a formation comprising an instrumented bit assembly coupled to a bottom end of the apparatus. At least one first electromagnetic wave antenna transmits an electromagnetic wave signal into the formation. At least one second electromagnetic wave antenna located on the instrumented bit assembly and longitudinally spaced apart from the at least one first electromagnetic wave antenna receives the electromagnetic wave signal transmitted through the formation. Electronic circuitry is operably coupled to the at least one second electromagnetic wave antenna to process the received signal to determine a resistivity of the formation proximate the instrumented bit assembly.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: July 21, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael S. Bittar, Vadim Minosyan, Gary E. Weaver
  • Publication number: 20150177406
    Abstract: Various embodiments include apparatus and methods to make resistivity measurements in a borehole using tool having an array of electrodes operable to provide focused currents, measure corresponding voltages, and measure corresponding voltage differences to determine resistivity. Tools can be configured to operate at a plurality of modes when voltage differences at some frequencies are effectively unreadable. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: July 13, 2012
    Publication date: June 25, 2015
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Shanjun Li, Luis Emilio San Martin, Michael S. Bittar, Jing Li
  • Publication number: 20150134254
    Abstract: Various embodiments include apparatus and methods to make resistivity measurements in a borehole using tool having an array of electrodes operable to provide focused currents and measure corresponding voltages to determine resistivity. Tools can be configured with a main electrode having a number of spaced apart electrodes within the main electrode such that the spaced apart electrodes are arranged azimuthally with respect to an axis of the tool. Generation of current from the spaced apart electrodes and control of current from additional electrodes on each side of the main electrode can provide for focused measurements. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: January 3, 2012
    Publication date: May 14, 2015
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Shanjun Li, Michael S. Bittar
  • Patent number: 9008970
    Abstract: A method and system to compensate for inaccuracies in crosswell tomography is presented. The method includes obtaining data from at least two receivers in response to transmissions from at least two transmitters. Next, at least one compensated value is derived based on the responses of the receivers to the transmitters. Finally, an inversion is performed based at least in part on the compensated value derived. This method eliminates inaccuracies that can be caused by sensor gain and phase variations in the inversion process. Inversion results with gain and phase compensation produce better imaging results that can better help determine the shape and boundaries of the reservoir.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: April 14, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Burkay Donderici, Baris Guner, Michael S. Bittar, Luis E. San Martin
  • Patent number: 9002649
    Abstract: Various resistivity logging tools, systems, and methods are disclosed. At least some tool embodiments include transmit and receive antennas that measure the electromagnetic response of the formation, at least one of which is tilted to provide a directional sensitivity. A processor converts the response (measured as a function of the tool's rotation angle) into a set of inversion parameters, which are then used to estimate the anisotropic properties of the formation. The set of inversion parameters includes at least one parameter based on an antipodal sum of the response signal, and may further include parameters based on an antipodal difference and an average of the signal response. Antipodal sum and difference values at different rotational orientations can be included in the set of inversion parameters, and they may be normalized to reduce environmental effects. Some tool embodiments collect the relevant formation measurements using parallel or perpendicular tilted antennas.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 7, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael S. Bittar, Yumei Tang, Shanjun Li
  • Publication number: 20150047902
    Abstract: Various embodiments include apparatus and methods to operate a drilling operation relative to formation boundaries. The apparatus and methods can include operating one or more transmitters in a borehole in a formation having a thickness between two boundaries, selecting thickness models based on applying responses from operating the one or more transmitters such that the thickness of the formation is between the two thickness models, and generating a value of a distance to a nearest boundary based on linearization of the thickness models with respect to a long distance investigation parameter and a short distance investigation parameter. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: September 27, 2011
    Publication date: February 19, 2015
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Yumei Tang, Wenshan Yu, Michael S. Bittar
  • Patent number: 8957683
    Abstract: Disclosed dielectric logging tools and methods employ three or more receive horn antennas positioned between at least two transmit antennas, which can also be horn antennas. The logging tools can operate in the range between 100 MHz and 10 GHz to provide logs of formation permittivity, formation conductivity, standoff distance, and electrical properties of material in the standoff gap. Logs of water-saturated porosity and/or oil movability can be readily derived. The presence of additional receive antennas offers a significantly extended operating range, additional depths of investigation, increased measurement accuracy, and further offers compensation for tool standoff and mudcake effects. In both wireline and logging while drilling embodiments, at least some disclosed dielectric logging tools employ a set of three axially-spaced receive antennas positioned between pairs of axially-spaced transmit antennas.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: February 17, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael S. Bittar, Jing Li
  • Patent number: 8947095
    Abstract: Multi-array laterolog tool systems and methods acquire a set of array measurements sufficient to provide laterolog tool measurements of differing array sizes. Such systems and method offer multiple depths of investigation while offering greater measurement stability in borehole environments having high resistivity contrasts. In at least some system embodiments, a wireline or LWD tool body has a center electrode positioned between multiple pairs of guard electrodes and a pair of return electrodes. The tool's electronics provide a current from the center electrode to the pair of return electrodes and currents from each pair of guard electrodes to the pair of return electrodes. Each of the currents may be distinguishable by frequency or distinguishable by some other means. This novel arrangement of currents provides a complete set of measurements that enables one tool to simultaneously emulate a whole range of laterolog tools.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: February 3, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael S. Bittar, Shanjun Li, Jing Li
  • Patent number: 8917094
    Abstract: Downhole tools and techniques acquire information regarding nearby conductors such as pipes, well casing, and conductive formations. At least some method embodiments provide a current flow along a drill string in a borehole. The current flow disperses into the surrounding formation and causes a secondary current flow in the nearby conductor. The magnetic field from the secondary current flow can be detected using one or more azimuthally-sensitive antennas. Direction and distance estimates may be obtainable from the azimuthally-sensitive measurements, and can be used as the basis for steering the drillstring relative to the distant conductor. Possible techniques for providing current flow in the drillstring include imposing a voltage across an insulated gap or using a toroid around the drillstring to induce the current flow.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: December 23, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael S. Bittar, Jing Li