Patents by Inventor Michael S. DeCourcy

Michael S. DeCourcy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240144465
    Abstract: Shell-and-tube devices typically require regular maintenance. Described herein is an automated method for tracking the status of individual tubes during maintenance activities and recording status data for review and analysis. Status data may optionally be reported in real-time summary format and/or used to predict time-to-completion. The method helps to reduce the expense of performing maintenance activities in shell-and-tube devices, including shell-and-tube reactors and heat exchangers.
    Type: Application
    Filed: May 9, 2022
    Publication date: May 2, 2024
    Inventors: Michael S. DECOURCY, Kishlay TRIPATHY
  • Patent number: 10919015
    Abstract: A method for uniformly distributing a process liquid within a process vessel includes providing a process liquid to a fouling-resistant liquid distributor installed within a process vessel having a cross-sectional area; causing rotational movement of the fouling-resistant liquid distributor; uniformly distributing the process liquid over the cross-sectional area within the process vessel; and simultaneously self-rinsing the fouling-resistant liquid distributor with a portion of the process liquid during uniform distribution. A system is also disclosed which includes a supply of process fluid, a stationary conduit and a liquid distribution head attached to the conduit. The liquid distribution head is motive, powered by a fluid, and includes at least one process liquid delivery port. The at least one process liquid delivery port is configured to provide a +10° or greater angle of liquid coverage when the liquid distribution head is moving.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: February 16, 2021
    Assignee: Arkema France
    Inventors: Michael S. DeCourcy, Christian Lacroix, Etienne Bastien
  • Publication number: 20200179889
    Abstract: A method for uniformly distributing a process liquid within a process vessel includes providing a process liquid to a fouling-resistant liquid distributor installed within a process vessel having a cross-sectional area; causing rotational movement of the fouling-resistant liquid distributor; uniformly distributing the process liquid over the cross-sectional area within the process vessel; and simultaneously self-rinsing the fouling-resistant liquid distributor with a portion of the process liquid during uniform distribution. A system is also disclosed which includes a supply of process fluid, a stationary conduit and a liquid distribution head attached to the conduit. The liquid distribution head is motive, powered by a fluid, and includes at least one process liquid delivery port. The at least one process liquid delivery port is configured to provide a +10° or greater angle of liquid coverage when the liquid distribution head is moving.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Michael S. DECOURCY, Christian LACROIX, Etienne BASTIEN
  • Patent number: 10596537
    Abstract: A method for uniformly distributing a process liquid within a process vessel includes providing a process liquid to a fouling-resistant liquid distributor installed within a process vessel having a cross-sectional area; causing rotational movement of the fouling-resistant liquid distributor; uniformly distributing the process liquid over the cross-sectional area within the process vessel; and simultaneously self-rinsing the fouling-resistant liquid distributor with a portion of the process liquid during uniform distribution. A system is also disclosed which includes a supply of process fluid, a stationary conduit and a liquid distribution head attached to the conduit. The liquid distribution head is motive, powered by a fluid, and includes at least one process liquid delivery port. The at least one process liquid delivery port is configured to provide a +10° or greater angle of liquid coverage when the liquid distribution head is moving.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: March 24, 2020
    Assignee: Arkema France
    Inventors: Michael S. Decourcy, Christian Lacroix, Etienne Bastien
  • Patent number: 10532338
    Abstract: The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: January 14, 2020
    Assignee: Arkema Inc.
    Inventors: Michael S. Decourcy, John L. Steinbach, Nicolas Dupont, Roger L. Roundy
  • Publication number: 20190201862
    Abstract: The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Inventors: Michael S. DeCourcy, John L. STEINBACH, Nicolas DUPONT, Roger L. ROUNDY
  • Patent number: 10286374
    Abstract: The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: May 14, 2019
    Assignee: Arkema Inc.
    Inventors: Michael S. DeCourcy, John L. Steinbach, Nicolas Dupont, Roger L. Roundy
  • Patent number: 10112885
    Abstract: A process for recovering (meth)acrylic acid includes distilling a mixture comprising (meth)acrylic acid in a finishing column at less than atmospheric pressure to produce a finishing column overhead stream and a finishing column bottoms stream. An overhead aspirating direct contact condenser system at least partially condenses the finishing column overhead stream to form a finishing column overhead condensate and an overhead non-condensables vent stream. A finishing column vapor-phase side draw may also be recovered. An aspirating direct contact condenser system may be used to at least partially condense the vapor-phase side draw.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: October 30, 2018
    Assignee: Arkema Inc.
    Inventor: Michael S. Decourcy
  • Publication number: 20180078919
    Abstract: The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Michael S. DeCourcy, John L. STEINBACH, Nicolas DUPONT, Roger L. ROUNDY
  • Patent number: 9861948
    Abstract: The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 9, 2018
    Assignee: Arkema Inc.
    Inventors: Michael S. Decourcy, John L. Steinbach, Nicolas Dupont, Roger L. Roundy
  • Publication number: 20170174604
    Abstract: A process for recovering (meth)acrylic acid includes distilling a mixture comprising (meth)acrylic acid in a finishing column at less than atmospheric pressure to produce a finishing column overhead stream and a finishing column bottoms stream. An overhead aspirating direct contact condenser system at least partially condenses the finishing column overhead stream to form a finishing column overhead condensate and an overhead non-condensables vent stream. A finishing column vapor-phase side draw may also be recovered. An aspirating direct contact condenser system may be used to at least partially condense the vapor-phase side draw.
    Type: Application
    Filed: February 12, 2015
    Publication date: June 22, 2017
    Inventor: Michael S. DECOURCY
  • Publication number: 20160303532
    Abstract: The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 20, 2016
    Inventors: Michael S. DeCourcy, John L. Steinbach, Nicolas Dupont, Roger L. Roundy
  • Patent number: 9440903
    Abstract: The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: September 13, 2016
    Assignee: Arkema Inc.
    Inventors: Michael S. DeCourcy, John L. Steinbach, Nicolas Dupont, Roger L. Roundy
  • Publication number: 20160175796
    Abstract: A method for uniformly distributing a process liquid within a process vessel includes providing a process liquid to a fouling-resistant liquid distributor installed within a process vessel having a cross-sectional area; causing rotational movement of the fouling-resistant liquid distributor; uniformly distributing the process liquid over the cross-sectional area within the process vessel; and simultaneously self-rinsing the fouling-resistant liquid distributor with a portion of the process liquid during uniform distribution. A system is also disclosed which includes a supply of process fluid, a stationary conduit and a liquid distribution head attached to the conduit. The liquid distribution head is motive, powered by a fluid, and includes at least one process liquid delivery port. The at least one process liquid delivery port is configured to provide a +10° or greater angle of liquid coverage when the liquid distribution head is moving.
    Type: Application
    Filed: July 18, 2014
    Publication date: June 23, 2016
    Inventors: Michael S. DECOURCY, Christian LACROIX, Etienne BASTIEN
  • Publication number: 20140200366
    Abstract: The present invention provides a method for reducing accumulation of solid materials when manufacturing a (meth)acrylic acid ester having low biacetyl content (less than 2 ppm) by adding an aromatic diamine under conditions which provide sufficient residence time and thorough mixing to react up to 100% by weight of the biacetyl in the crude (meth)acrylic acid ester stream, prior to separation and purification. A feedback method is also provided for reducing solids accumulation in the separation and purification equipment of such processes by measuring the biacetyl content and adjusting the aromatic diamine addition rate so that excess aromatic diamine can be minimized. A third embodiment provides a method for reversing an accumulation of solid materials during such processes, while still producing a (meth)acrylic acid ester having low biacetyl content (less than 2 ppm), by reducing or ceasing the addition rate of aromatic diamine for a period of time.
    Type: Application
    Filed: June 1, 2012
    Publication date: July 17, 2014
    Applicant: ROHM AND HAAS COMPANY
    Inventors: Michael A. Curtis, Michael S. Decourcy, David A. Flosser, Melissa Harris, Jamie J. Juliette, Philippe P. Maillot
  • Publication number: 20130274508
    Abstract: The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
    Type: Application
    Filed: October 16, 2012
    Publication date: October 17, 2013
    Applicant: Arkema Inc.
    Inventors: Michael S. DeCourcy, John L. Steinbach, Nicolas Dupont, Roger L. Roundy
  • Patent number: 8002047
    Abstract: A method for attenuating deflagration pressure produced by combustion of combustible gas in a defined region of a process vessel. The method generally comprises selecting and placing attenuating material in the defined region of the process vessel, wherein the selected attenuating material maintains its physical shape under the operating conditions. The attenuating material should occupy at least 20% of the volume of the defined region of the process vessel. Use of the inventive method may be beneficially applied for the safe operation of oxidation reactors with flammable, high hydrocarbon concentration feeds in order to attain increased productivity.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: August 23, 2011
    Assignee: Rohm and Haas Company
    Inventors: Michael S. DeCourcy, James E. Elder, Timothy Allen Hale, Nam Quoc Le, Patrick Kevin Pugh, John Somson
  • Publication number: 20090277655
    Abstract: A method for attenuating deflagration pressure produced by combustion of combustible gas in a defined region of a process vessel. The method generally comprises selecting and placing attenuating material in the defined region of the process vessel, wherein the selected attenuating material maintains its physical shape under the operating conditions. The attenuating material should occupy at least 20% of the volume of the defined region of the process vessel. Use of the inventive method may be beneficially applied for the safe operation of oxidation reactors with flammable, high hydrocarbon concentration feeds in order to attain increased productivity.
    Type: Application
    Filed: March 30, 2009
    Publication date: November 12, 2009
    Inventors: Michael S. DeCourcy, Patrick Kevin Pugh, John Sornson, James E. Elder, Timothy Allen Hale, Nam Quoc Le