Patents by Inventor Michael S. KESLER

Michael S. KESLER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11718898
    Abstract: An alloy includes aluminum, a rare earth element, and an alloying element selected from the following: Si, Cu, Mg, Fe, Ti, Zn, Zr, Mn, Ni, Sr, B, Ca, and a combination thereof. The aluminum (Al), the rare earth element (RE), and the alloying element are characterized by forming at least one form of an intermetallic compound. An amount of the rare earth element in the alloy is in a range of about 1 wt. % to about 12 wt. %, and an amount of the alloying element in the alloy is greater than an amount of the alloying element present in the intermetallic compound.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: August 8, 2023
    Assignees: Lawrence Livermore National Security, LLC, University of Tennessee Research Foundation, Iowa State University Research Foundation, Inc., UT-Battelle, LLC, Eck Industries, Inc.
    Inventors: Emily E. Moore, Hunter B. Henderson, Aurelien Perron, Scott K. McCall, Orlando Rios, Zachary C. Sims, Michael S. Kesler, David Weiss, Patrice E. A. Turchi, Ryan T. Ott
  • Patent number: 11667996
    Abstract: A solid aluminum-fiber composite comprising: (i) an aluminum-containing matrix comprising elemental aluminum; (ii) coated or uncoated fibers embedded within said aluminum-containing matrix, wherein said fibers have a different composition than said aluminum-containing matrix and impart additional strength to said aluminum-containing matrix as compared to said aluminum-containing matrix in the absence of said fibers embedded therein; and (iii) an intermetallic layer present as an interface between each of said fibers and the aluminum-containing matrix, wherein said intermetallic layer has a composition different from said aluminum-containing matrix and said fibers, and said intermetallic layer contains at least one element that is also present in the aluminum-containing matrix and at least one element present in the fibers, whether from the coated or interior portion of the fibers. Methods of producing the above-described composite are also described.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 6, 2023
    Assignees: UT-Battelle, LLC, Eck Industries, Inc.
    Inventors: Orlando Rios, Michael S. Kesler, Zachary C. Sims, Edgar Lara-Curzio, David Weiss
  • Patent number: 11565318
    Abstract: A reactive matrix infiltration process is described herein, which includes contacting a surface of a preform comprising reinforcement material particles with a molten infiltrant comprising a matrix material, the matrix material comprising an Al—Ce alloy, whereby the infiltrant at least partially fills spaces between the reinforcement material particles by capillary action and reacts with the reinforcement material particles to form a composite material form, the composite material comprising the matrix material, at least one intermetallic phase, and, optionally, reinforcement material particles. A composite material form also is described, which includes a plurality of reinforcement material particles comprising a metal alloy or a ceramic, a matrix material at least partially filling spaces between the reinforcement material particles; and at least one intermetallic phase surrounding at least some of the reinforcement material particles.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 31, 2023
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Eck Industries Incorporated
    Inventors: Orlando Rios, Craig A. Bridges, Amelia M. Elliott, Hunter B. Henderson, Michael S. Kesler, Zachary Sims, David Weiss
  • Patent number: 11535912
    Abstract: An alloy for structural direct-writing additive manufacturing comprising a base element selected from the group consisting of aluminum (Al), nickel (Ni) and a combination thereof, and a rare earth element selected from the group consisting of cerium (Ce), lanthanide (La) and a combination thereof, and a eutectic intermetallic present in said alloy in an amount ranging from about 0.5 wt. % to 7.5 wt. %. The invention is also directed to a method of structural direct-write additive manufacturing using the above-described alloy, as well as 3D objects produced by the method. The invention is also directed to methods of producing the above-described alloy.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: December 27, 2022
    Assignees: UT-Battelle, LLC, Eck Industries, Inc.
    Inventors: Orlando Rios, David Weiss, Zachary C. Sims, William G. Carter, Michael S. Kesler
  • Patent number: 11365463
    Abstract: The disclosure concerns methods for making a composition comprising a light metal and an intermetallic comprising the light metal and a light rare earth element. The composition also may include a plurality of nanoparticles comprising an oxide of the light metal. The method includes directly reducing a light rare earth element precursor compound in a melt of the light metal, thereby forming the light rare earth element and nanoparticles of the light metal oxide.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: June 21, 2022
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Eck Industries Incorporated, Iowa State University Research Foundation, Inc., Colorado School of Mines, Lawrence Livermore National Security, LLC
    Inventors: Orlando Rios, Hunter B. Henderson, Michael S. Kesler, Bruce A. Moyer, Zachary Sims, David Weiss, Ryan Ott, Corby Anderson, Hao Cui, Scott McCall
  • Publication number: 20220145486
    Abstract: A product includes an aluminum alloy having an anodized layer. The alloy has a bulk composition including at least 1 wt. % of one or more rare earth elements (REEs). A product includes microstructures extending across a boundary defined between an anodized layer and an unoxidized alloy. Each microstructure includes an intermetallic phase transitioning to an oxidized intermetallic phase across the boundary. A product includes an anodized layer where up to 90% of a thickness of the layer includes voids resulting at least in part from dissolution of a rare earth element oxidized intermetallic phase. The voids are in a morphology of the dissolved oxidized intermetallic phase.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 12, 2022
    Inventors: Scott K. McCall, David Weiss, Michael S. Kesler, Michael J. Thompson, Orlando Rios, Hunter B. Henderson, Zachary Cole Sims, Ryan T. Ott
  • Publication number: 20210355565
    Abstract: The disclosure concerns methods for making a composition comprising a light metal and an intermetallic comprising the light metal and a light rare earth element. The composition also may include a plurality of nanoparticles comprising an oxide of the light metal. The method includes directly reducing a light rare earth element precursor compound in a melt of the light metal, thereby forming the light rare earth element and nanoparticles of the light metal oxide.
    Type: Application
    Filed: February 4, 2020
    Publication date: November 18, 2021
    Inventors: Orlando Rios, Hunter B. Henderson, Michael S. Kesler, Bruce A. Moyer, Zachary Sims, David Weiss, Ryan Ott, Corby Anderson, Hao Cui
  • Publication number: 20210324500
    Abstract: An alloy for structural direct-writing additive manufacturing comprising a base element selected from the group consisting of aluminum (Al), nickel (Ni) and a combination thereof, and a rare earth element selected from the group consisting of cerium (Ce), lanthanide (La) and a combination thereof, and a eutectic intermetallic present in said alloy in an amount ranging from about 0.5 wt. % to 7.5 wt. %. The invention is also directed to a method of structural direct-write additive manufacturing using the above-described alloy, as well as 3D objects produced by the method. The invention is also directed to methods of producing the above-described alloy.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Applicants: UT-Battelle, LLC, Eck Industries, Inc.
    Inventors: Orlando RIOS, David WEISS, Zachary C. SIMS, William G. CARTER, Michael S. KESLER
  • Publication number: 20210108292
    Abstract: An alloy includes aluminum, a rare earth element, and an alloying element selected from the following: Si, Cu, Mg, Fe, Ti, Zn, Zr, Mn, Ni, Sr, B, Ca, and a combination thereof. The aluminum (Al), the rare earth element (RE), and the alloying element are characterized by forming at least one form of an intermetallic compound. An amount of the rare earth element in the alloy is in a range of about 1 wt. % to about 12 wt. %, and an amount of the alloying element in the alloy is greater than an amount of the alloying element present in the intermetallic compound.
    Type: Application
    Filed: July 13, 2020
    Publication date: April 15, 2021
    Inventors: Emily E. Moore, Hunter B. Henderson, Aurelien Perron, Scott K. McCall, Orlando Rios, Zachary C. Sims, Michael S. Kesler, David Weiss, Patrice E. A. Turchi, Ryan T. Ott
  • Publication number: 20210060652
    Abstract: A reactive matrix infiltration process is described herein, which includes contacting a surface of a preform comprising reinforcement material particles with a molten infiltrant comprising a matrix material, the matrix material comprising an Al—Ce alloy, whereby the infiltrant at least partially fills spaces between the reinforcement material particles by capillary action and reacts with the reinforcement material particles to form a composite material form, the composite material comprising the matrix material, at least one intermetallic phase, and, optionally, reinforcement material particles. A composite material form also is described, which includes a plurality of reinforcement material particles comprising a metal alloy or a ceramic, a matrix material at least partially filling spaces between the reinforcement material particles; and at least one intermetallic phase surrounding at least some of the reinforcement material particles.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 4, 2021
    Inventors: Orlando Rios, Craig A. Bridges, Amelia M. Elliott, Hunter B. Henderson, Michael S. Kesler, Zachary Sims, David Weiss
  • Patent number: 10782193
    Abstract: An example apparatus can comprise an emitter to emit radio frequency radiation, an absorber that changes temperature based on emissions from the emitter, and one or more sensors to measure a temperature difference between a sample and a reference coupled to the absorber.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 22, 2020
    Assignees: UT-Battelle, LLC, Iowa State University Research Foundation, Inc.
    Inventors: Tom Byvank, Benjamin S. Conner, Roger A. Kisner, Michael A. McGuire, Orlando Rios, Michael S. Kesler, Gerard M. Ludtka, Boyd Evans, Cajetan Ikenna Niebedim, Ralph William McCallum
  • Publication number: 20190169725
    Abstract: A solid aluminum-fiber composite comprising: (i) an aluminum-containing matrix comprising elemental aluminum; (ii) coated or uncoated fibers embedded within said aluminum-containing matrix, wherein said fibers have a different composition than said aluminum-containing matrix and impart additional strength to said aluminum-containing matrix as compared to said aluminum-containing matrix in the absence of said fibers embedded therein; and (iii) an intermetallic layer present as an interface between each of said fibers and the aluminum-containing matrix, wherein said intermetallic layer has a composition different from said aluminum-containing matrix and said fibers, and said intermetallic layer contains at least one element that is also present in the aluminum-containing matrix and at least one element present in the fibers, whether from the coated or interior portion of the fibers. Methods of producing the above-described composite are also described.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 6, 2019
    Inventors: Orlando RIOS, Michael S. KESLER, Zachary C. SIMS, Edgar LARA-CURZIO, David WEISS
  • Publication number: 20170362687
    Abstract: An alloy for structural direct-writing additive manufacturing comprising a base element selected from the group consisting of aluminum (Al), nickel (Ni) and a combination thereof, and a rare earth element selected from the group consisting of cerium (Ce), lanthanide (La) and a combination thereof, and a eutectic intermetallic present in said alloy in an amount ranging from about 0.5 wt. % to 7.5 wt. %. The invention is also directed to a method of structural direct-write additive manufacturing using the above-described alloy, as well as 3D objects produced by the method. The invention is also directed to methods of producing the above-described alloy.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 21, 2017
    Inventors: Orlando RIOS, David WEISS, Zachary C. SIMS, William G. CARTER, Michael S. KESLER