Patents by Inventor Michael S. Lockard

Michael S. Lockard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140231263
    Abstract: Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 21, 2014
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard
  • Patent number: 8808800
    Abstract: Electrochemical fabrication processes and apparatus for producing single layer or multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers includes operations for reducing stress and/or curvature distortion when the structure is released from a sacrificial material which surrounded it during formation and possibly when released from a substrate on which it was formed. Six primary groups of embodiments are presented which are divide into eleven primary embodiments. Some embodiments attempt to remove stress to minimize distortion while others attempt to balance stress to minimize distortion.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 19, 2014
    Assignee: Microfabrica Inc.
    Inventors: Ananda H. Kumar, Jorge Sotelo Albarran, Adam L. Cohen, Kieun Kim, Michael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Publication number: 20140216941
    Abstract: Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 7, 2014
    Inventors: Gang Zhang, Adam L. Cohen, Michael S. Lockard, Ananda H. Kumar, Ezekiel J.J. Kruglick, Kieun Kim
  • Publication number: 20140209473
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: February 20, 2014
    Publication date: July 31, 2014
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Publication number: 20140209470
    Abstract: Multilayer structures are electrochemically fabricated on a temporary (e.g. conductive) substrate and are thereafter bonded to a permanent (e.g. dielectric, patterned, multi-material, or otherwise functional) substrate and removed from the temporary substrate. In some embodiments, the structures are formed from top layer to bottom layer, such that the bottom layer of the structure becomes adhered to the permanent substrate, while in other embodiments the structures are formed from bottom layer to top layer and then a double substrate swap occurs. The permanent substrate may be a solid that is bonded (e.g. by an adhesive) to the layered structure or it may start out as a flowable material that is solidified adjacent to or partially surrounding a portion of the structure with bonding occurring during solidification. The multilayer structure may be released from a sacrificial material prior to attaching the permanent substrate or it may be released after attachment.
    Type: Application
    Filed: February 19, 2014
    Publication date: July 31, 2014
    Inventors: Jeffrey A. Thompson, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20140197145
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or method of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Application
    Filed: January 15, 2014
    Publication date: July 17, 2014
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Publication number: 20140197904
    Abstract: Multi-layer, multi-material fabrication methods include depositing at least one structural material and at least one sacrificial material during the formation of each of a plurality of layers wherein deposited materials for each layer are planarized to set a boundary level for the respective layer and wherein during formation of at least one layer at least three materials are deposited with a planarization operation occurring before deposition of the last material to set a planarization level above the layer boundary level and wherein a planarization occurs after deposition of the last material level above the layer boundary level and wherein a planarization occurs after deposition of the last material whereby the boundary level for the layer is set. Some formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g.
    Type: Application
    Filed: February 28, 2014
    Publication date: July 17, 2014
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20140134453
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that (1) partially coats the surface of the structure, (2) completely coats the surface of the structure, and/or (3) completely coats the surface of structural material of each layer from which the structure is formed including interlayer regions. These embodiments incorporate both the core material and the shell material into the structure as each layer is formed along with a sacrificial material that is removed after formation of all layers of the structure. In some embodiments the core material may be a material that would be removed with sacrificial material if it were accessible by an etchant during removal of the sacrificial material.
    Type: Application
    Filed: September 4, 2013
    Publication date: May 15, 2014
    Applicant: Microfabrica Inc.
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 8713788
    Abstract: Multi-layer, multi-material fabrication methods include depositing at least one structural material and at least one sacrificial material during the formation of each of a plurality of layers wherein deposited materials for each layer are planarized to set a boundary level for the respective layer and wherein during formation of at least one layer at least three materials are deposited with a planarization operation occurring before deposition of the last material to set a planarization level above the layer boundary level and wherein a planarization occurs after deposition of the last material whereby the boundary level for the layer is set. Some formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: May 6, 2014
    Assignee: Microfabrica Inc.
    Inventors: Elliot R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Patent number: 8702956
    Abstract: Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: April 22, 2014
    Assignee: Microfabrica Inc.
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard
  • Patent number: 8702955
    Abstract: Embodiments are directed to methods for forming multi-layer three-dimensional structures involving the joining of at least two structural elements, at least one of which is formed as a multi-layer three-dimensional structure, wherein the joining occurs via one of: (1) elastic deformation and elastic recovery and subsequent retention of elements relative to each other, (2) relative deformation of an initial portion of at least one element relative to another portion of the at least one element until the at least two elements are in a desired retention position after which the deformation is reduced or eliminated and a portion of at least one element is brought into position which in turn locks the at least two elements together via contact with one another including contact with the initial portion of at least one element, or (3) moving a retention region of one element into the retention region of the other element, without deformation of either element, along a path including a loading region of the other el
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: April 22, 2014
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Vacit Arat, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 8613846
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: December 24, 2013
    Assignee: Microfabrica Inc.
    Inventors: Ming Ting Wu, Rulon Joseph Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 8551314
    Abstract: Various embodiments of the invention are directed to formation of mesoscale or microscale devices using electrochemical fabrication techniques where structures are formed from a plurality of layers as opened structures which can be folded over or other otherwise combined to form structures of desired configuration. Each layer is formed from at least one structural material and at least one sacrificial material. The initial formation of open structures may facilitate release of the sacrificial material, ability to form fewer layers to complete a structure, ability to locate additional materials into the structure, ability to perform additional processing operations on regions exposed while the structure is open, and/or the ability to form completely encapsulated and possibly hollow structures.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: October 8, 2013
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20130226209
    Abstract: The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices include tissue anchoring projections, improved blade configurations, and/or shields or shrouds around the cutting blades to inhibit outflow of tissue that has been brought into the device.
    Type: Application
    Filed: April 9, 2013
    Publication date: August 29, 2013
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen, Pierre E. Dupont, Pedro J. Del Nido, Nikolay V. Vasilyev
  • Patent number: 8512578
    Abstract: Multi-layer structures are electrochemically fabricated from at least one structural material (e.g. nickel), that is configured to define a desired structure and which may be attached to a substrate, and from at least one sacrificial material (e.g. copper) that surrounds the desired structure. After structure formation, the sacrificial material is removed by a multi-stage etching operation. In some embodiments sacrificial material to be removed may be located within passages or the like on a substrate or within an add-on component. The multi-stage etching operations may be separated by intermediate post processing activities, they may be separated by cleaning operations, or barrier material removal operations, or the like. Barriers may be fixed in position by contact with structural material or with a substrate or they may be solely fixed in position by sacrificial material and are thus free to be removed after all retaining sacrificial material is etched.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Dale S. McPherson
  • Patent number: 8512861
    Abstract: Embodiments of multi-layer three-dimensional structures and formation methods provide structures with effective feature (e.g. opening) sizes (e.g. virtual gaps) that are smaller than a minimum feature size (MFS) that exists on each layer as a result of the formation method used in forming the structures. In some embodiments, multi-layer structures include a first element (e.g. first patterned layer with a gap) and a second element (e.g. second patterned layer with a gap) positioned adjacent the first element to define a third element (e.g. a net gap or opening resulting from the combined gaps of the first and second elements) where the first and second elements have features that are sized at least as large as the minimum feature size and the third element, at least in part, has dimensions or defines dimensions smaller than the minimum feature size.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: August 20, 2013
    Assignee: Microfabrica Inc.
    Inventors: Michael S. Lockard, Adam L. Cohen, Vacit Arat, Dennis R. Smalley
  • Patent number: 8475458
    Abstract: The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: July 2, 2013
    Assignee: Microfabrica Inc.
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen, Ming Ting Wu, Gregory P. Schmitz, Eric C. Miller
  • Patent number: 8414607
    Abstract: The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices include tissue anchoring projections, improved blade configurations, and/or shields or shrouds around the cutting blades to inhibit outflow of tissue that has been brought into the device.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: April 9, 2013
    Assignees: Microfabrica Inc., Trustees of Boston University, Children's Hospital Boston
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen, Pierre E. Dupont, Pedro J. Del Nido, Nikolay V. Vasilyev
  • Patent number: 8382423
    Abstract: Embodiments are directed to micro-scale or meso-scale devices having hydraulic or pneumatic actuation mechanisms incorporating bearings elements (such as ball bearings, cylindrical bearings, interference bearings, or hydrostatic bearings. Devices of some embodiments are turbines. Some devices may function as medical devices. Other embodiments are directed to multi-layer, multi-material electrochemical fabrication methods for producing such devices.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: February 26, 2013
    Assignee: Microfabrica Inc.
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard
  • Patent number: 8262916
    Abstract: Embodiments of the invention are directed to multi-layer, multi-material fabrication methods (e.g. electrochemical fabrication methods) which provide improved versatility in producing complex microdevices and in particular in removing sacrificial material from passages, channels, or cavities that are complex or that include etching access ports in their final configurations that are small relative to passage, channel, or cavity lengths. Embodiments of the present invention provide for removal of sacrificial material from these passages, channels or cavities using one or more initial or preliminary removal steps that occur prior to completion of the such passages that results from the completion of the layer forming steps. In some embodiments, first sacrificial material is replaced after a secondary solid sacrificial material after the initial removal step or steps. In other embodiments, the first sacrificial material is replaced after a liquid material after the initial removal step or steps.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 11, 2012
    Assignee: Microfabrica Inc.
    Inventors: Dennis R. Smalley, Michael S. Lockard, Adam L. Cohen