Patents by Inventor Michael S. Westphall

Michael S. Westphall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10852306
    Abstract: Described herein are mass spectrometry systems and methods which improve the accuracy of isobaric tag-based quantification by alleviating the pervasive problem of precursor interference and co-isolation of impurities through gas-phase purification. During the gas-phase purification, the mass-to-charge ratios of precursor ions within at least a selected range are selectively changed allowing ions having similar unmodified mass-to-charge ratios to be separated before further isolation, fragmentation or analysis.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: December 1, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Joshua J. Coon, Michael S. Westphall
  • Patent number: 10809267
    Abstract: Described herein are mass spectrometry systems and methods which improve the accuracy of isobaric tag-based quantification by alleviating the pervasive problem of precursor interference and co-isolation of impurities through gas-phase purification. During the gas-phase purification, the mass-to-charge ratios of precursor ions within at least a selected range are selectively changed allowing ions having similar unmodified mass-to-charge ratios to be separated before further isolation, fragmentation or analysis.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: October 20, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Joshua J. Coon, Michael S. Westphall
  • Patent number: 10273511
    Abstract: Enzymes for producing non-straight-chain fatty acids, microorganisms comprising the enzymes, and in vivo and in vitro uses of the enzymes. Provided are enzymes capable of producing various non-straight-chain fatty acids, including branched-chain fatty acids, cyclic fatty acids, and furan-containing fatty acids. The enzymes include RSP2144, RSP1091, and RSP1090 from Rhodobacter sphaeroides and homologs thereof. The enzymes can be purified to produce non-straight-chain fatty acids in vitro or expressed in microorganisms to produce non-straight-chain fatty acids in vivo. The microorganisms can be fine-tuned to produce a specific type of non-straight-chain fatty acid by expressing, overexpressing, or deleting the enzymes in various combinations.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 30, 2019
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Rachelle A. S. Lemke, Timothy James Donohue, Joshua J. Coon, Amelia C. Peterson, Michael S. Westphall
  • Patent number: 10153146
    Abstract: The invention provides methods, systems and algorithms for identifying high-resolution mass spectra. In some embodiments, an analyte is ionized and analyzed using high-resolution mass spectrometry (MS) at high mass accuracy (such as ?75 ppm or ?30 ppm) and the obtained mass spectra are matched with one or more prospective candidate molecules or chemical formulas. The invention provide, for example, methods and systems wherein the possible fragments that can be generated from the candidate molecules or chemical formulas are determined as well as the masses of each of these fragments. The invention provide, for example, methods and systems wherein the high-resolution mass spectra are then compared with the calculated fragment masses for each of the candidate molecules or chemical formula, and the portion of the high-resolution mass spectra that corresponds or can be explained by the calculated fragment masses is determined.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: December 11, 2018
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Nicholas W. Kwiecien, Derek J. Bailey, Michael S. Westphall, Joshua J. Coon
  • Publication number: 20170285042
    Abstract: Described herein are mass spectrometry systems and methods which improve the accuracy of isobaric tag-based quantification by alleviating the pervasive problem of precursor interference and co-isolation of impurities through gas-phase purification. During the gas-phase purification, the mass-to-charge ratios of precursor ions within at least a selected range are selectively changed allowing ions having similar unmodified mass-to-charge ratios to be separated before further isolation, fragmentation or analysis.
    Type: Application
    Filed: June 1, 2017
    Publication date: October 5, 2017
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Joshua J. COON, Michael S. WESTPHALL
  • Patent number: 9698001
    Abstract: Described herein are mass spectrometry systems and methods which improve the accuracy of isobaric tag-based quantification by alleviating the pervasive problem of precursor interference and co-isolation of impurities through gas-phase purification. During the gas-phase purification, the mass-to-charge ratios of precursor ions within at least a selected range are selectively changed allowing ions having similar unmodified mass-to-charge ratios to be separated before further isolation, fragmentation or analysis.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: July 4, 2017
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Joshua J. Coon, Michael S. Westphall
  • Publication number: 20150376659
    Abstract: Enzymes for producing non-straight-chain fatty acids, microorganisms comprising the enzymes, and in vivo and in vitro uses of the enzymes. Provided are enzymes capable of producing various non-straight-chain fatty acids, including branched-chain fatty acids, cyclic fatty acids, and furan-containing fatty acids. The enzymes include RSP2144, RSP1091, and RSP1090 from Rhodobacter sphaeroides and homologs thereof. The enzymes can be purified to produce non-straight-chain fatty acids in vitro or expressed in microorganisms to produce non-straight-chain fatty acids in vivo. The microorganisms can be fine-tuned to produce a specific type of non-straight-chain fatty acid by expressing, overexpressing, or deleting the enzymes in various combinations.
    Type: Application
    Filed: June 30, 2015
    Publication date: December 31, 2015
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Rachelle A.S. Lemke, Timothy James Donohue, Joshua J. Coon, Amelia C. Peterson, Michael S. Westphall
  • Publication number: 20150340216
    Abstract: The invention provides methods, systems and algorithms for identifying high-resolution mass spectra. In some embodiments, an analyte is ionized and analyzed using high-resolution mass spectrometry (MS) at high mass accuracy (such as ?75 ppm or ?30 ppm) and the obtained mass spectra are matched with one or more prospective candidate molecules or chemical formulas. The invention provide, for example, methods and systems wherein the possible fragments that can be generated from the candidate molecules or chemical formulas are determined as well as the masses of each of these fragments. The invention provide, for example, methods and systems wherein the high-resolution mass spectra are then compared with the calculated fragment masses for each of the candidate molecules or chemical formula, and the portion of the high-resolution mass spectra that corresponds or can be explained by the calculated fragment masses is determined.
    Type: Application
    Filed: March 27, 2015
    Publication date: November 26, 2015
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Nicholas W. KWIECIEN, Derek J. BAILEY, Michael S. WESTPHALL, Joshua J. COON
  • Patent number: 9040903
    Abstract: Described herein are mass spectrometry systems and methods which utilize a dynamic a new data acquisition/instrument control methodology. These systems and methods employ novel artificial intelligence algorithms to greatly increase quantitative and/or identification accuracy during data acquisition. In an embodiment, the algorithms can adapt the instrument methods and systems during data acquisition to direct data acquisition resources to increase quantitative or identification accuracy of target analytes, such as proteins, peptides, and peptide fragments.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: May 26, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Joshua J. Coon, Michael S. Westphall, Graeme McAlister, Derek Bailey
  • Patent number: 8628974
    Abstract: A fast and sensitive method and device for protein sequencing are disclosed. The method uses a combination of Edman degradation chemistry and mass spectrometry to sequence proteins and polypeptides. A peptide degradation reaction is performed on a polypeptide or protein ion reactant in the gas phase. The reaction yields a first ion product corresponding to a first amino acid residue of the polypeptide or protein reactant and a polypeptide or protein fragment ion. The mass-to-charge ratio for the first ion product, or the polypeptide or protein fragment ion, or both, is then determined. The first amino acid residue of the polypeptide or protein reactant is then identified from the mass-to-charge ratio so determined.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: January 14, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Xiaoyu Chen, Michael S. Westphall, Lloyd M. Smith, Brian L. Frey
  • Publication number: 20130084645
    Abstract: Described herein are mass spectrometry systems and methods which improve the accuracy of isobaric tag-based quantification by alleviating the pervasive problem of precursor interference and co-isolation of impurities through gas-phase purification. During the gas-phase purification, the mass-to-charge ratios of precursor ions within at least a selected range are selectively changed allowing ions having similar unmodified mass-to-charge ratios to be separated before further isolation, fragmentation or analysis.
    Type: Application
    Filed: April 3, 2012
    Publication date: April 4, 2013
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Joshua J. Coon, Michael S. Westphall
  • Publication number: 20120261568
    Abstract: Described herein are mass spectrometry systems and methods which utilize a dynamic a new data acquisition/instrument control methodology. These systems and methods employ novel artificial intelligence algorithms to greatly increase quantitative and/or identification accuracy during data acquisition. In an embodiment, the algorithms can adapt the instrument methods and systems during data acquisition to direct data acquisition resources to increase quantitative or identification accuracy of target analytes, such as proteins, peptides, and peptide fragments.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 18, 2012
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Joshua J. Coon, Michael S. Westphall, Graeme McAlister, Derek Bailey
  • Patent number: 7884324
    Abstract: The present invention provides systems, devices, device components and structures for modulating the intensity and/or energies of electrons, including a beam of incident electrons. In some embodiments, for example, the present invention provides nano-structured semiconductor membrane structures capable of generating secondary electron emission. Nano-structured semiconductor membranes of this aspect of the present invention include membranes having an array of nanopillar structures capable of providing electron emission for amplification, filtering and/or detection of incident radiation, for example secondary electron emission and/or field emission. Nano-structured semiconductor membranes of the present invention are useful as converters wherein interaction of incident primary electrons and nanopillars of the nanopillar array generates secondary emission.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 8, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Robert H. Blick, Michael S. Westphall, Hua Qin, Lloyd M. Smith
  • Publication number: 20090321633
    Abstract: The present invention provides systems, devices, device components and structures for modulating the intensity and/or energies of electrons, including a beam of incident electrons. In some embodiments, for example, the present invention provides nano-structured semiconductor membrane structures capable of generating secondary electron emission. Nano-structured semiconductor membranes of this aspect of the present invention include membranes having an array of nanopillar structures capable of providing electron emission for amplification, filtering and/or detection of incident radiation, for example secondary electron emission and/or field emission. Nano-structured semiconductor membranes of the present invention are useful as converters wherein interaction of incident primary electrons and nanopillars of the nanopillar array generates secondary emission.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 31, 2009
    Inventors: Robert H. BLICK, Michael S. WESTPHALL, Hua QIN, Lloyd M. SMITH
  • Patent number: 7518108
    Abstract: This invention provides methods, devices and device components for preparing ions from liquid samples containing chemical species and methods and devices for analyzing chemical species in liquid samples. The present invention provides an ion source for generating analyte ions having a selected charge state distribution, such as a reduced charged state distribution, that may be effectively interfaced with a variety of charged particle analyzers, including virtually any type of mass spectrometer.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 14, 2009
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Brian L. Frey, Lloyd M. Smith, Michael S. Westphall
  • Publication number: 20080248585
    Abstract: A fast and sensitive method and device for protein sequencing are disclosed. The method uses a combination of Edman degradation chemistry and mass spectrometry to sequence proteins and polypeptides. A peptide degradation reaction is performed on a polypeptide or protein ion reactant in the gas phase. The reaction yields a first ion product corresponding to a first amino acid residue of the polypeptide or protein reactant and a polypeptide or protein fragment ion. The mass-to-charge ratio for the first ion product, or the polypeptide or protein fragment ion, or both, is then determined. The first amino acid residue of the polypeptide or protein reactant is then identified from the mass-to-charge ratio so determined.
    Type: Application
    Filed: July 15, 2005
    Publication date: October 9, 2008
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Xiaoyu Chen, Michael S. Westphall, Lloyd M. Smith, Brian L. Frey
  • Patent number: 7078679
    Abstract: The invention provides devices, device configurations and methods for improved sensitivity, resolution and efficiency in mass spectrometry, particularly as applied to biological molecules, including biological polymers, such as proteins and nucleic acids. More particularly, the invention provides methods and devices for analyzing and detecting electrically charged particles, especially suitable for gas phase ions generated from high molecular weight compounds. In one aspect, the invention provides devices and methods for determining the velocity, charged state or both of electrically charged particles and packets of electrically charged particles. In another aspect, the invention provides methods and devices for the time-of-flight analysis of electrically charged particles comprising spatially collimated sources. In another aspect, the invention relates to multiple detection using inductive detectors, improved methods of signal averaging and charged particle detection in coincidence.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: July 18, 2006
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Michael S. Westphall, Lloyd M. Smith
  • Publication number: 20040169137
    Abstract: The invention provides devices, device configurations and methods for improved sensitivity, resolution and efficiency in mass spectrometry, particularly as applied to biological molecules, including biological polymers, such as proteins and nucleic acids. More particularly, the invention provides methods and devices for analyzing and detecting electrically charged particles, especially suitable for gas phase ions generated from high molecular weight compounds. In one aspect, the invention provides devices and methods for determining the velocity, charged state or both of electrically charged particles and packets of electrically charged particles. In another aspect, the invention provides methods and devices for the time-of-flight analysis of electrically charged particles comprising spatially collimated sources. In another aspect, the invention relates to multiple detection using inductive detectors, improved methods of signal averaging and charged particle detection in coincidence.
    Type: Application
    Filed: November 26, 2003
    Publication date: September 2, 2004
    Inventors: Michael S. Westphall, Lloyd M. Smith
  • Patent number: 6727497
    Abstract: The charge state of ions produced by electrospray ionization is reduced in a controlled manner to yield predominantly singly charged ions through reactions with bipolar ions generated using a 210Po alpha particle source or equivalent. The multiply charged ions generated by the electrospray undergo charge reduction in a charge reduction chamber. The charge-reduced ions are then detected using a commercial orthogonal electrospray TOF mass spectrometer, although the charge reduction chamber can be adapted to virtually any mass analyzer. The results obtained exhibit a signal intensity drop-off with increased oligonucleotide size similar to that observed with MALDI mass spectrometry, yet with the softness of ESI and without the off-line sample purification and pre-separation required by MALDI.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: April 27, 2004
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Mark A. Scalf, Lloyd M. Smith, Michael S. Westphall, Daniel D. Ebeling
  • Patent number: 6649907
    Abstract: Methods and devices for use in mass spectral analysis of samples. In particular, methods and devices for generating ions from liquid samples containing chemical species with high molecular masses. These methods and devices provide a continuous or pulsed stream of gas phase analyte ions of either positive polarity, negative polarity or both possessing either a selected fixed charge-state distribution or one that may be selectively varied with time. More specifically, ion sources with adjustable control of the charge-state distribution of the gas phase analyte ions generated are provided in which charged droplets and/or gas phase analyte ions are exposed to electrons and/or gas phase reagent ions generated by a reagent ion source to provide desired control. A corona discharge exemplifies the reagent ion source employed in charge-state distribution control.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: November 18, 2003
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Daniel D. Ebeling, Michael S. Westphall, Mark A. Scalf, Lloyd M. Smith