Patents by Inventor Michael W. Stowell

Michael W. Stowell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210229503
    Abstract: This disclosure provides a tire formed of a body having multiple plies and a tread that surrounds the body. The plies and/or the treads and/or other surfaces of the tire include one or more resonators that respond to being interrogated by an externally generated excitation signal. Multiple resonators formed of electrically-conducting materials are disposed (e.g., printed) on the plies and/or tread and/or other surfaces of the tire. Each of a group of multiple resonators can be individually configured to respond to different frequencies of the excitation signal such that the presence of a response (e.g., a measured attenuation of the excitation signal return) or lack of response (e.g., based on comparison of the excitation signal return to calibration curves) from individual ones of the multiple resonators can be combined to form a serial number that is unique to the tire or other elastomer-containing component (e.g., belts, hoses, etc.) being interrogated.
    Type: Application
    Filed: April 9, 2021
    Publication date: July 29, 2021
    Applicant: Lyten, Inc.
    Inventors: Michael W. STOWELL, Bruce LANNING, Bryce H. ANZELMO, Karel VANHEUSDEN, Sung H. LIM, Carlos MONTALVO
  • Publication number: 20210229061
    Abstract: Disclosed apparatuses, systems, and materials relate to the disassociation of feedstock species (such as those in gaseous form) into constituent components, and may include an energy generator configured to provide a microwave energy. A first chamber defines a first volume and is configured to guide the microwave energy along the first chamber as a sinusoidal wave having an energy maxima at a point along the first chamber. A second chamber contains a plasma plume and is positioned substantially proximal to the first chamber, and is configured to enable propagation of the microwave energy through the first chamber and the second chamber such that the microwave energy demonstrates, at a radial center of the second chamber, a coaxial energy maxima configured to ignite the plasma plume contained in the second chamber. Carbon-containing materials may be formed by controlling flow parameters of the feedstock species into the first or second chamber.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 29, 2021
    Applicant: LytEn, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Elena Rogojina
  • Publication number: 20210226195
    Abstract: A method of producing a structured composite material is described. A porous media is provided, an electrically conductive material is deposited on surfaces or within pores of the plurality of porous media particles, and an active material is deposited on the surfaces or within the pores of the plurality of porous media particles coated with the electrically conductive material to coalesce the plurality of porous media particles together and form the structured composite material.
    Type: Application
    Filed: December 29, 2020
    Publication date: July 22, 2021
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, David Tanner, Bruce Lanning, Joe Griffith Cruz
  • Publication number: 20210226225
    Abstract: In some implementations, a metal air battery includes a body defined by a metal anode and a cathode, a first separator layer disposed on the metal anode, a second separator layer disposed on the cathode, and a plurality of beads disposed within the body. The beads may confine a liquid electrolyte, and may be configured to release the liquid electrolyte into interior portions of the battery in response to a compression of the cathode into the body of the battery.
    Type: Application
    Filed: March 31, 2021
    Publication date: July 22, 2021
    Applicant: Lyten, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Anurag Kumar, Hossein-Ali Ghezelbash
  • Publication number: 20210226302
    Abstract: In some implementations, a metal air battery includes an anode and an cathode opposite to the anode. The cathode may be formed as a textured carbon-based scaffold and include an opening into the metal air battery. The metal air battery may include a nano-fibrous membrane (NFM) containing a liquid electrolyte and a functionalized carbon structure may be disposed between the cathode and the NFM. The functionalized carbon structure may allow moisture and oxygen from ambient air to permeate through the NFM and diffuse throughout the textured scaffold of the cathode. A moisture barrier layer may be laminated over the cathode and positioned, by a user, in one of two states. When in a first state, the moisture barrier layer may seal the opening. When in a second state, the moisture barrier layer may allow the moisture and the oxygen to enter the textured scaffold.
    Type: Application
    Filed: March 31, 2021
    Publication date: July 22, 2021
    Applicant: Lyten, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Anurag Kumar, Hossein-Ali Ghezelbash
  • Publication number: 20210218110
    Abstract: In some implementations, a metal air battery includes a metal anode, a cathode, a body, a nano-fibrous membrane (NFM), and a hygroscopic interphase layer disposed between the cathode and the NFM. The cathode may be a carbon-based textured scaffold including a plurality of macroporous pathways to distribute oxygen and water vapor supplied by ambient air throughout the cathode and into interior portions of the body. The NFM may include dry salts to produce a liquid electrolyte when exposed to water vapor delivered by the macroporous pathways of the cathode. The hygroscopic interphase layer may include a plurality of microporous pathways configured to drain excess quantities of the water vapor from the cathode and hydrate the dry salts with the water vapor.
    Type: Application
    Filed: March 31, 2021
    Publication date: July 15, 2021
    Applicant: Lyten, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Anurag Kumar, Hossein-Ali Ghezelbash
  • Publication number: 20210181146
    Abstract: A sensing device for detecting analytes within a package or container is disclosed. In various implementations, the sensing device may include a substrate, one or more electrodes, and a sensor array. The sensor array may be disposed on the substrate, and may include a plurality of carbon-based sensors coupled to the one or more electrodes. The carbon-based sensors may be configured to react with unique groups of analytes in response to an electromagnetic signal received from an external device. In some instances, a first sensor may be configured to detect a presence of each analyte of a group of analytes, and a second sensor may be configured to confirm the presence of each analyte of a subset of the group of analytes.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 17, 2021
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Sung H. Lim, John Chmiola, Karel Vanheusden, Daniel Cook, George Clayton Gibbs
  • Publication number: 20210181145
    Abstract: Sensors for detecting analytes are disclosed. In various implementations, the sensing device may include a substrate and a sensor array. The sensor array may be arranged on the substrate, and may include a plurality of sensors. In some implementations, at least two of the sensors may include a first carbon-based sensing material disposed between a first pair of electrodes, and a second carbon-based sensing material disposed between a second pair of electrodes. The first carbon-based sensing material may be configured to detect a presence of each analyte of a group of analytes, and the second carbon-based sensing material may be configured to confirm the presence of each analyte of a subset of the group of analytes. In some instances, the group of analytes includes at least twice as many different analytes as the subset of analytes.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 17, 2021
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Sung H. Lim, John Chmiola, Karel Vanheusden, Daniel Cook, George Clayton Gibbs
  • Publication number: 20210172904
    Abstract: A container for storing one or more items is disclosed. The container may include a surface defining a volume of the container and a label printed on the container. In various implementations, the label includes a substrate, a plurality of carbon-based sensors printed on the substrate, and one or more electrodes printed on the substrate. The sensors may be collectively configured to detect a presence of one or more analytes within the container. Each sensor may be configured to react with a unique group of analytes in response to an electromagnetic signal received from an external device. The electrodes may be configured to provide one or more output signals indicating the presence or absence of the one or more analytes within the container.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Sung H. Lim, John Chmiola, Karel Vanheusden, Daniel Cook, George Clayton Gibbs
  • Publication number: 20210172905
    Abstract: A sensing device configured to monitor a battery pack is disclosed. The sensing device may include a plurality of carbon-based sensors enclosed within the battery pack. Each sensor coupled may be between a corresponding pair of electrodes, and may include a plurality of 3D graphene-based sensing materials. In some instances, the 3D graphene-based sensing materials of a first sensor may be functionalized with a first material configured to detect a presence of each analyte of a first group of analytes, and the 3D graphene-based sensing materials of a second sensor may be functionalized with a second material configured to detect a presence of each analyte of a second group of analytes.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Sung H. Lim, John Chmiola, Karel Vanheusden, Daniel Cook, George Clayton Gibbs
  • Publication number: 20210142012
    Abstract: Methods include receiving a request from a user device to download an application and providing access to the application in response to the request. The application is configured to transmit a first electromagnetic radiation and receive, from an electromagnetic state sensing device (EMSSD) that is affixed to product packaging, a first electromagnetic radiation return signal. The first electromagnetic radiation return signal is transduced by the EMSSD to produce an electromagnetic radiation signal that encodes first information comprising a product identification code.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Patent number: 10998552
    Abstract: In some embodiments, a lithium ion battery includes a first substrate, a cathode, a second substrate, an anode, and an electrolyte. The cathode is arranged on the first substrate and can contain a cathode mixture including LixSy, wherein x is from 0 to 2 and y is from 1 to 8, and a first particulate carbon. The anode is arranged on the second substrate and can contain an anode mixture containing silicon particles, and a second particulate carbon. The electrolyte can contain a solvent and a lithium salt and is arranged between the cathode and the anode. In some embodiments, the first particulate carbon or the second particulate carbon contains carbon aggregates comprising a plurality of carbon nanoparticles, each carbon nanoparticle comprising graphene. In some embodiments, the particulate carbon contains carbon meta particles with mesoporous structures.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: May 4, 2021
    Assignee: LytEn, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Bryce H. Anzelmo, George Clayton Gibbs, Shreeyukta Singh, Hossein-Ali Ghezelbash, Prashanth Jampani Hanumantha, Daniel Cook, David Tanner
  • Publication number: 20210126286
    Abstract: This disclosure provides a battery including a cathode an anode positioned opposite the cathode. The anode includes a hybrid artificial solid-electrolyte interphase (A-SEI) layer encapsulating the anode. The hybrid A-SEI layer includes a first active component, a second active component disposed on the first active component, and a plurality of carbon-containing aggregates interwoven throughout the first and second active components and configured to inhibit growth of Li dendritic structures from the anode towards the cathode. A separator is positioned between the anode and the cathode. The cathode includes a porous carbon-based structure configured to expand in a presence of polysulfide (PS) shuttle within one or more portions of the battery. An electrolyte is dispersed between the anode and the cathode and in contact with both the anode and the cathode. The plurality of carbon-containing aggregates can include a polymer, which includes a cross-linked polymeric network.
    Type: Application
    Filed: September 9, 2020
    Publication date: April 29, 2021
    Applicant: Lyten, Inc.
    Inventors: Elena Rogojina, Qianwen Huang, Jerzy Gazda, Jeffrey Bell, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Publication number: 20210126244
    Abstract: This disclosure provides a lithium (Li) ion battery that includes an anode, a cathode positioned opposite to the anode, a porous separator positioned between the anode and the cathode, and a liquid electrolyte in contact with the anode and the cathode. The anode includes an electrically conductive substrate. A first film is deposited on the electrically conductive substrate. The first film includes a first concentration of carbon particles in contact with each other and defines a first electrical conductivity for the first film. Each of the carbon particles includes a plurality of aggregates formed of few layer graphene sheets. The plurality of aggregates form a porous structure configured to undergo a lithiation, which can include any one or more of an intercalation operation or a plating operation. The anode and the cathode can include an electroactive material. The porous structure can provide conduction between the few layer graphene sheets.
    Type: Application
    Filed: July 29, 2020
    Publication date: April 29, 2021
    Applicant: Lyten, Inc.
    Inventors: Jerzy Gazda, Bruce Lanning, Jeffrey Bell, Anurag Kumar, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs, Michael W. Stowell
  • Publication number: 20210126246
    Abstract: This disclosure provides systems and methods of manufacturing an anode, which can include nucleating a plurality of carbon particles at a first concentration level, forming a first film on a sacrificial substrate based on the first concentration level, each of the carbon particles defined by a plurality of aggregates formed of few layer graphene sheets fused together, defining a porous structure based on the few layer graphene sheets; and infusing a molten lithium (Li) metal into the porous structure. A plurality of interconnected porous channels can be defined based on the plurality of carbon particles. A second film can be formed by nucleating the carbon particles at a second concentration level on the first film. The first film can be configured to provide a first electrical conductivity and the second film can be configured to provide a second electrical conductivity different than the first electrical conductivity.
    Type: Application
    Filed: July 29, 2020
    Publication date: April 29, 2021
    Applicant: Lyten, Inc.
    Inventors: Jerzy Gazda, Bruce Lanning, Jeffrey Bell, David Cao, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs, Michael W. Stowell
  • Publication number: 20210126243
    Abstract: This disclosure provides an electrochemical cell electrode including a film layer deposited on an electrically conductive substrate. The film layer includes a concentration of carbon aggregates formed from a plurality of few layer graphene sheets orthogonally fused together. A porous structure is defined by the plurality of few layer graphene sheets and is configured to any provide for electrical conduction between contact points between any two or more of the plurality of few layer graphene sheets or host an electroactive material. The electrochemical cell electrode can be an anode. The electroactive material can include an elemental lithium (Li) interspersed in a D-spacing between adjacent few layer graphene sheets in the anode. An additional film can be deposited on the film. The film can be configured to provide a first electrical conductivity and the additional film can be configured to provide a second electrical conductivity different from the first electrical conductivity.
    Type: Application
    Filed: July 29, 2020
    Publication date: April 29, 2021
    Applicant: Lyten, Inc.
    Inventors: Bruce Lanning, Jerzy Gazda, Jeffrey Bell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs, Michael W. Stowell
  • Publication number: 20210126287
    Abstract: This disclosure provides a battery comprising a cathode and an anode positioned opposite the cathode. A hybrid artificial solid-electrolyte interphase (A-SEI) layer is deposited on the anode and includes a plurality of active components. A blended material is interwoven throughout the plurality of active components and configured to inhibit growth of Lithium (Li) dendritic structures from the anode to the cathode. The blended material includes a combination of crystalline sp2-bound carbon domains of graphene sheets and a plurality of flexible wrinkle areas positioned at joinder points of two of more of the crystalline sp2-bound carbon domains of graphene sheets and a polymeric matrix configured to bind the plurality of active components and the blended material together. An electrolyte is in contact with the hybrid A-SEI and the cathode and a separator is positioned between the anode and the cathode. The blended material includes curable carboxylate salts of metals.
    Type: Application
    Filed: September 9, 2020
    Publication date: April 29, 2021
    Applicant: Lyten, Inc.
    Inventors: Elena Rogojina, Qianwen Huang, Jerzy Gazda, Jeffrey Bell, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Publication number: 20210126258
    Abstract: This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
    Type: Application
    Filed: September 9, 2020
    Publication date: April 29, 2021
    Applicant: Lyten, Inc.
    Inventors: Jeffrey Bell, You Li, Jesse Baucom, John Thorne, Qianwen Huang, Anurag Kumar, Jerzy Gazda, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Patent number: 10955378
    Abstract: A method for detecting an analyte comprises providing a first carbon-based material comprising reactive chemistry additives, providing conductive electrodes connected to the first carbon-based material, exposing the first carbon-based material to an analyte, applying a plurality of alternating currents having a range of frequencies across the conductive electrodes, and measuring the complex impedance of the first carbon-based material using the plurality of alternating currents.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: March 23, 2021
    Assignee: LytEn, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Sung H. Lim, Shreeyukta Singh, John Chmiola
  • Patent number: 10943076
    Abstract: Methods include receiving a request from a user device to download an application and providing access to the application in response to the request. The application is configured to transmit a first electromagnetic radiation and receive, from an electromagnetic state sensing device (EMSSD) that is affixed to product packaging, a first electromagnetic radiation return signal. The first electromagnetic radiation return signal is transduced by the EMSSD to produce an electromagnetic radiation signal that encodes first information comprising a product identification code.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: March 9, 2021
    Assignee: LytEn, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning