Patents by Inventor Michael Yue Zhang

Michael Yue Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11907054
    Abstract: The system comprises a plurality of driver modules coupled by a fault condition bus, e.g. single-wire bus. Each driver module includes an Error Flag Interface block coupled between a single terminal error flag input/output (EF I/O) and a Control block. Each driver module may be coupled- to a motor. When a driver module detects a local fault condition, its Error Flag Interface block is configured to lower the voltage at the single terminal EF I/O to communicate the change to the other driver modules. The Error Flag Interface block is further configured to monitor voltage changes at its single terminal EF I/O. An external fault condition is detected when the single terminal EF I/O is at a low voltage. The Error Flag Interface block is further configured to send a signal disabling the output of the driver module.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: February 20, 2024
    Assignee: POWER INTEGRATIONS, INC.
    Inventors: Stefan Baeurle, Michael Yue Zhang
  • Publication number: 20230259418
    Abstract: The system comprises a plurality of driver modules coupled by a fault condition bus, e.g. single-wire bus. Each driver module includes an Error Flag Interface block coupled between a single terminal error flag input/output (EF I/O) and a Control block. Each driver module may be coupled- to a motor. When a driver module detects a local fault condition, its Error Flag Interface block is configured to lower the voltage at the single terminal EF I/O to communicate the change to the other driver modules. The Error Flag Interface block is further configured to monitor voltage changes at its single terminal EF I/O. An external fault condition is detected when the single terminal EF I/O is at a low voltage. The Error Flag Interface block is further configured to send a signal disabling the output of the driver module.
    Type: Application
    Filed: June 21, 2022
    Publication date: August 17, 2023
    Applicant: Power Integrations, Inc.
    Inventors: Stefan Baeurle, Michael Yue Zhang
  • Patent number: 10903774
    Abstract: A communication system for use in a switching module includes a low-side control block coupled to control switching of a low-side switch of the switching module. The low-side control block is further coupled to be referenced with a low-side reference system ground. A high-side control block is coupled to control switching of a high-side switch of the switching module. The high-side control block is further coupled to be referenced with a floating node of the switching module. During steady state operation, the low-side control block is coupled to send signals during each switching cycle to the high-side control block to turn the high-side switch on and off. A status update is communicated from the high-side control block to the low-side control block through a first single-wire communication link.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: January 26, 2021
    Assignee: Power Integrations, Inc.
    Inventors: Stefan Bäurle, Michael Yue Zhang, Yury Gaknoki
  • Publication number: 20190140573
    Abstract: A communication system for use in a switching module includes a low-side control block coupled to control switching of a low-side switch of the switching module. The low-side control block is further coupled to be referenced with a low-side reference system ground. A high-side control block is coupled to control switching of a high-side switch of the switching module. The high-side control block is further coupled to be referenced with a floating node of the switching module. During steady state operation, the low-side control block is coupled to send signals during each switching cycle to the high-side control block to turn the high-side switch on and off. A status update is communicated from the high-side control block to the low-side control block through a first single-wire communication link.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Inventors: Stefan Bäurle, Michael Yue Zhang, Yury Gaknoki
  • Patent number: 10181813
    Abstract: A communication system for use in a switching module includes a low-side control block coupled to control switching of a low-side switch of the switching module. The low-side control block is further coupled to be referenced with a low-side reference system ground. A high-side control block is coupled to control switching of a high-side switch of the switching module. The high-side control block is further coupled to be referenced with a floating node of the switching module. During steady state operation, the low-side control block is coupled to send signals during each switching cycle to the high-side control block to turn the high-side switch on and off. A status update is communicated from the high-side control block to the low-side control block through a first single-wire communication link.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: January 15, 2019
    Assignee: Power Integrations, Inc.
    Inventors: Stefan Bäurle, Michael Yue Zhang, Yury Gaknoki
  • Publication number: 20180302017
    Abstract: A system for use with a motor includes a system controller and a device coupled to the system controller. The device includes a switching element and a current sense output terminal coupled to the system controller. The current sense terminal is coupled to provide a current signal representative of the current of the switching element.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 18, 2018
    Inventors: Stefan Bäurle, Yury Gaknoki, Michael Yue Zhang
  • Publication number: 20180123495
    Abstract: A communication system for use in a switching module includes a low-side control block coupled to control switching of a low-side switch of the switching module. The low-side control block is further coupled to be referenced with a low-side reference system ground. A high-side control block is coupled to control switching of a high-side switch of the switching module. The high-side control block is further coupled to be referenced with a floating node of the switching module. During steady state operation, the low-side control block is coupled to send signals during each switching cycle to the high-side control block to turn the high-side switch on and off. A status update is communicated from the high-side control block to the low-side control block through a first single-wire communication link.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 3, 2018
    Inventors: Stefan Bäurle, Michael Yue Zhang, Yury Gaknoki
  • Patent number: 9692298
    Abstract: A transient event detector includes a first reference generator, an adjustable low-pass filter, and a comparator. The first reference generator coupled to scale the input current signal to generate a first reference current signal that tracks the input current signal. The adjustable low-pass filter circuit is coupled to receive the input current signal and to generate a filtered input current signal such that a magnitude of a slope of the filtered input current signal is less than the magnitude of the slope of the input current signal during a transient event. The first comparator is coupled to generate an event detection signal that indicates the presence of the transient event in response to a value of the filtered input current signal reaching a value of the first reference current signal. The adjustable low-pass filter circuit is configured to increase the cutoff frequency in response to the event detection signal.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: June 27, 2017
    Assignee: Power Integrations, Inc.
    Inventors: Ricardo Luis Janezic Pregitzer, Mingming Mao, Tiziano Pastore, Michael Yue Zhang, Yury Gaknoki
  • Patent number: 9680383
    Abstract: A controller for use in a power converter includes a state selection circuit coupled to receive an input voltage sense signal representative of an input voltage, a switch current sense signal representative of a switch current of a power switch, and a feedback signal representative of an output quantity of the power converter. The state selection circuit is coupled to generate an input voltage signal in response to the input voltage sense signal, an input current signal in response to the switch current sense signal, and an input threshold signal in response to the feedback signal. A state machine circuit is coupled to the state selection circuit to generate a drive signal in response to the input voltage signal, the input current signal, and the input threshold signal to switch the power switch to control a transfer of energy from an input to an output of the power converter.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: June 13, 2017
    Assignee: Power Integrations, Inc.
    Inventors: Mingming Mao, Ricardo Luis Janezic Pregitzer, Michael Yue Zhang, Tiziano Pastore
  • Patent number: 9621019
    Abstract: A controller includes a multiplier block that is coupled to receive an input voltage signal, an input current signal, and an output voltage signal that are representative of a power conversion system. The multiplier block outputs a multiplier block output signal responsive to a product of the input voltage signal and the input current signal divided by the output voltage signal. A signal discriminator outputs a error signal responsive to the multiplier block output signal. The error signal is representative of a difference between a portion of the multiplier block output signal that is greater than a reference signal and a portion of the multiplier block output signal that is less than or equal to the reference signal. A switch controller generates a drive signal responsive to the error signal to control switching of a power switch to regulate an average output current of the power conversion system.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: April 11, 2017
    Assignee: Power Intergrations, Inc.
    Inventors: Michael Yue Zhang, Ricardo Luis Janezic Pregitzer, Mingming Mao, Tiziano Pastore
  • Patent number: 9572224
    Abstract: Thermally protected bleeder circuits for maintaining an input current of a power converter above a dimmer circuit holding current are disclosed. In one example, a bleeder control circuit may generate a bleeder control signal to control a bleeder current of the bleeder circuit based on an input current signal and a temperature signal. The bleeder control circuit may cause the bleeder current to be substantially equal to zero in response to the input current signal being greater than or equal to a reference signal, and may cause the bleeder current to be proportional to a difference between the input current signal and the reference signal in response to the input current signal being less than the reference signal. The reference signal may be constant for temperatures less than a threshold temperature, but may decrease with respect to increases in temperature for temperatures greater than the threshold temperature.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: February 14, 2017
    Assignee: Power Integrations, Inc.
    Inventors: Yury Gaknoki, Mingming Mao, Tiziano Pastore, Ricardo Luis Janezic Pregitzer, Michael Yue Zhang
  • Patent number: 9484814
    Abstract: A bleeder controller for controlling a magnitude of a variable current conducted by bleeder circuitry between input terminals of a device is disclosed. The magnitude of the variable current is controllable in response to a control signal. The bleeder controller includes a dimming detector to classify a half line cycle as leading-edge-dimmed or a trailing-edge-dimmed in response to at least one of an input current sense signal and an input voltage sense signal.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: November 1, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Ricardo Luis Janezic Pregitzer, Mingming Mao, Tiziano Pastore, Michael Yue Zhang, Yury Gaknoki
  • Patent number: 9479065
    Abstract: A power conversion device includes a power switch a first main terminal coupled to a higher potential portion, a second main terminal coupled to a lower potential portion, and a tap coupled to the first main terminal to provide a current for charging a supply terminal capacitor. A controller is coupled to a control terminal of the power switch to control switching of the power switch to produce a regulated output. A supply terminal is to be coupled to a supply terminal capacitor to store a charge for supplying power to at least some of the components of the controller. A voltage regulator is coupled to regulate the charge stored and a potential on the supply terminal capacitor. The current for charging the supply terminal capacitor is selectively drawn from the tap of the power switch in response to the supply terminal capacitor being below a threshold.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: October 25, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Mingming Mao, Michael Yue Zhang, Tiziano Pastore, Yury Gaknoki, Ricardo Luis Janezic Pregitzer
  • Patent number: 9419528
    Abstract: A controller for a power converter includes an edge detection circuit including a first circuit coupled to coupled to compare a voltage sense signal representative of an input voltage to a first reference, and a second circuit coupled to compare a current sense signal representative of an input current to a second reference. A slope sense circuit is coupled to measure a slope of the voltage sense signal over time. An edge driver circuit is coupled to generate an edge signal that indicates that an edge has been determined when the voltage sense signal is greater than the first reference, the current sense signal is lower than the second reference, and the slope is negative. A drive circuit is coupled to output a drive signal in response to the edge signal. The drive signal is for controlling a switch coupled to regulate an output of the power converter.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: August 16, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Mingming Mao, Ricardo Luis Janezic Pregitzer, Tiziano Pastore, Michael Yue Zhang
  • Patent number: 9369048
    Abstract: A controller for a power converter includes an edge detection circuit and a drive circuit. The edge detection circuit includes a comparator, a count module, and an edge checking module. The comparator is coupled to output a compare signal in response to comparing an input sense signal and a count signal. The input sense signal is representative of an input voltage of the power converter. The count module is coupled to adjust the count signal to track the input sense signal in response to receiving the compare signal. The edge checking module is coupled to output at least one edge signal in response to the compare signal. The drive circuit is coupled to output a drive signal in response to the at least one edge signal. The drive signal is for controlling a switch coupled to regulate an output of the power converter.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: June 14, 2016
    Assignee: Power Integrations, Inc.
    Inventors: Mingming Mao, Ricardo Luis Janezic Pregitzer, Tiziano Pastore, Michael Yue Zhang
  • Publication number: 20160134182
    Abstract: A controller includes a multiplier block that is coupled to receive an input voltage signal, an input current signal, and an output voltage signal that are representative of a power conversion system. The multiplier block outputs a multiplier block output signal responsive to a product of the input voltage signal and the input current signal divided by the output voltage signal. A signal discriminator outputs a error signal responsive to the multiplier block output signal. The error signal is representative of a difference between a portion of the multiplier block output signal that is greater than a reference signal and a portion of the multiplier block output signal that is less than or equal to the reference signal. A switch controller generates a drive signal responsive to the error signal to control switching of a power switch to regulate an average output current of the power conversion system.
    Type: Application
    Filed: April 3, 2015
    Publication date: May 12, 2016
    Inventors: Michael Yue Zhang, Ricardo Luis Janezic Pregitzer, Mingming Mao, Tiziano Pastore
  • Publication number: 20160134187
    Abstract: A bleeder controller for controlling a magnitude of a variable current conducted by bleeder circuitry between input terminals of a device is disclosed. The magnitude of the variable current is controllable in response to a control signal. The bleeder controller includes a dimming detector to classify a half line cycle as leading-edge-dimmed or a trailing-edge-dimmed in response to at least one of an input current sense signal and an input voltage sense signal.
    Type: Application
    Filed: April 3, 2015
    Publication date: May 12, 2016
    Inventors: Ricardo Luis Janezic Pregitzer, Mingming Mao, Tiziano Pastore, Michael Yue Zhang, Yury Gaknoki
  • Publication number: 20160134189
    Abstract: A transient event detector includes a first reference generator, an adjustable low-pass filter, and a comparator. The first reference generator coupled to scale the input current signal to generate a first reference current signal that tracks the input current signal. The adjustable low-pass filter circuit is coupled to receive the input current signal and to generate a filtered input current signal such that a magnitude of a slope of the filtered input current signal is less than the magnitude of the slope of the input current signal during a transient event. The first comparator is coupled to generate an event detection signal that indicates the presence of the transient event in response to a value of the filtered input current signal reaching a value of the first reference current signal. The adjustable low-pass filter circuit is configured to increase the cutoff frequency in response to the event detection signal.
    Type: Application
    Filed: March 23, 2015
    Publication date: May 12, 2016
    Inventors: Ricardo Luis Janezic Pregitzer, Mingming Mao, Tiziano Pastore, Michael Yue Zhang, Yury Gaknoki
  • Publication number: 20160134197
    Abstract: A controller for use in a power converter includes a state selection circuit coupled to receive an input voltage sense signal representative of an input voltage, a switch current sense signal representative of a switch current of a power switch, and a feedback signal representative of an output quantity of the power converter. The state selection circuit is coupled to generate an input voltage signal in response to the input voltage sense signal, an input current signal in response to the switch current sense signal, and an input threshold signal in response to the feedback signal. A state machine circuit is coupled to the state selection circuit to generate a drive signal in response to the input voltage signal, the input current signal, and the input threshold signal to switch the power switch to control a transfer of energy from an input to an output of the power converter.
    Type: Application
    Filed: October 15, 2015
    Publication date: May 12, 2016
    Inventors: Mingming Mao, Ricardo Luis Janezic Pregitzer, Michael Yue Zhang, Tiziano Pastore
  • Publication number: 20160135257
    Abstract: Thermally protected bleeder circuits for maintaining an input current of a power converter above a dimmer circuit holding current are disclosed. In one example, a bleeder control circuit may generate a bleeder control signal to control a bleeder current of the bleeder circuit based on an input current signal and a temperature signal. The bleeder control circuit may cause the bleeder current to be substantially equal to zero in response to the input current signal being greater than or equal to a reference signal, and may cause the bleeder current to be proportional to a difference between the input current signal and the reference signal in response to the input current signal being less than the reference signal. The reference signal may be constant for temperatures less than a threshold temperature, but may decrease with respect to increases in temperature for temperatures greater than the threshold temperature.
    Type: Application
    Filed: June 4, 2015
    Publication date: May 12, 2016
    Inventors: Yury Gaknoki, Mingming Mao, Tiziano Pastore, Ricardo Luis Janezic Pregitzer, Michael Yue Zhang