Patents by Inventor Michal Jerzy Rewienski

Michal Jerzy Rewienski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11797737
    Abstract: This disclosure describes a method for finding equivalent classes of hard defects in a stacked MOSFET array. The method includes identifying the stacked MOSFET array in a circuit netlist. The stacked MOSFET array includes standard MOSFETs sharing gate and bulk terminals. The method further includes determining electrical defects for the standard MOSFETs, grouping the electrical defects into at least one intermediate equivalent defect class based on a topological equivalence of the electrical defects, grouping the electrical defects in the at least one intermediate equivalent defect class into at least one final equivalent defect class based on an electrical equivalence of the electrical defects, performing a defect simulation on an electrical defect in the at least one final equivalent defect class, and attributing a result of the defect simulation on the electrical defect to additional electrical defects in the final equivalent defect class.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: October 24, 2023
    Assignee: Synopsys, Inc.
    Inventors: Mayukh Bhattacharya, Michal Jerzy Rewienski, Shan Yuan, Michael Durr, Chih Ping Antony Fan
  • Publication number: 20210374313
    Abstract: This disclosure describes a method for finding equivalent classes of hard defects in a stacked MOSFET array. The method includes identifying the stacked MOSFET array in a circuit netlist. The stacked MOSFET array includes standard MOSFETs sharing gate and bulk terminals. The method further includes determining electrical defects for the standard MOSFETs, grouping the electrical defects into at least one intermediate equivalent defect class based on a topological equivalence of the electrical defects, grouping the electrical defects in the at least one intermediate equivalent defect class into at least one final equivalent defect class based on an electrical equivalence of the electrical defects, performing a defect simulation on an electrical defect in the at least one final equivalent defect class, and attributing a result of the defect simulation on the electrical defect to additional electrical defects in the final equivalent defect class.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Applicant: Synopsys, Inc.
    Inventors: Mayukh BHATTACHARYA, Michal Jerzy REWIENSKI, Shan YUAN, Michael DURR, Chih Ping Antony FAN
  • Publication number: 20210312113
    Abstract: In modern VLSI technology, often, stacked arrays of smaller sized MOSFETs are used to achieve the desired width and length of a design MOSFET. In analog defect simulation, each physical transistor can contribute to the circuit's defect universe and this can directly lead to tremendous increase in defect simulation time. Here we propose a method of finding equivalent defects in the context of stacked MOSFET arrays that can lead to significant reduction in defect simulation effort and yet provide accurate defect coverage results.
    Type: Application
    Filed: April 2, 2021
    Publication date: October 7, 2021
    Applicant: Synopsys, Inc.
    Inventors: Mayukh BHATTACHARYA, Michal Jerzy Rewienski, Shan Yuan, Michael Durr, Chih Ping Antony Fan
  • Publication number: 20160379175
    Abstract: The present invention describes mobile phone applications that include methods and systems which automatically schedule tasks from a dynamically-changing task list for efficient utilization of available time. Unlike the prior personal task scheduling systems, the proposed system uses optimization algorithms and computer programs when creating a time schedule of tasks. In order to schedule individual tasks, the system takes into account multiple constraints controllable by the user. Basic constraints include individual task's deadline, start-time, minimum and maximum time-chunks for task fragments, relative priority of tasks (in case of time-collision), etc. Further constraints may include user's general preferences regarding individual task or group of tasks. Specifically, preferences may include time-of-day (e.g., morning, evening), location (e.g., home, work, particular grocery store or chain, particular gym, park), etc.
    Type: Application
    Filed: June 23, 2015
    Publication date: December 29, 2016
    Inventors: Mayukh Bhattacharya, Michal Jerzy Rewienski, Soummya Kar, Udita Bhattacharya
  • Patent number: 9032352
    Abstract: A method of asymmetric asynchronous decoupling of capacitors in an integrated circuit design is provided for faster simulation by circuit simulators, e.g. FastSPICE circuit simulators. This method includes removing a coupling capacitor from a list, which includes coupling capacitors that capacitively couple two nets in the design. The two nets have capacitances C1 and C2, and at least one of capacitances C1 and C2 exceeds a threshold. The coupling capacitor has capacitance Cc. When coupling capacitance Cc is low and only one of capacitances C1 and C2 has a low capacitance, then a forward capacitance can be used at whichever of the two nets has the low capacitance and a lump capacitance can be used at the other net for simulation. When coupling capacitance Cc is low and both of capacitances C1 and C2 have high capacitances, then lump capacitances can be used at the two nets for the simulation.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: May 12, 2015
    Assignee: Synopsys, Inc.
    Inventors: Mayukh Bhattacharya, Michal Jerzy Rewienski, Amelia Huimin Shen
  • Publication number: 20140365986
    Abstract: A method of asymmetric asynchronous decoupling of capacitors in an integrated circuit design is provided for faster simulation by circuit simulators, e.g. FastSPICE circuit simulators. This method includes removing a coupling capacitor from a list, which includes coupling capacitors that capacitively couple two nets in the design. The two nets have capacitances C1 and C2, and at least one of capacitances C1 and C2 exceeds a threshold. The coupling capacitor has capacitance Cc. When coupling capacitance Cc is low and only one of capacitances C1 and C2 has a low capacitance, then a forward capacitance can be used at whichever of the two nets has the low capacitance and a lump capacitance can be used at the other net for simulation. When coupling capacitance Cc is low and both of capacitances C1 and C2 have high capacitances, then lump capacitances can be used at the two nets for the simulation.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 11, 2014
    Inventors: Mayukh Bhattacharya, Michal Jerzy Rewienski, Amelia Huimin Shen