Patents by Inventor Michel Molinier

Michel Molinier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8071828
    Abstract: In a process for producing xylene by transalkylation of a C9+ aromatic hydrocarbon feedstock, the feedstock, at least one C6-C7 aromatic hydrocarbon and hydrogen are supplied to at least one reaction zone containing at least first and second catalyst beds located such that the feedstock and hydrogen contact the first bed before contacting the second bed. The first catalyst bed comprises a first catalyst composition comprising a molecular sieve having a Constraint Index in the range of about 3 to about 12 and at least one metal or compound thereof of Groups 6-10 of the Periodic Table of the Elements, and the second catalyst bed comprises a second catalyst composition comprising a molecular sieve having a Constraint Index less than 3.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: December 6, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chunshe Cao, Michel Molinier
  • Publication number: 20110190560
    Abstract: In a process for producing xylene by transalkylation of a C9+ aromatic hydrocarbon feedstock, the feedstock, at least one C6-C7 aromatic hydrocarbon and hydrogen are supplied to at least one reaction zone containing at least first and second catalyst beds located such that the feedstock and hydrogen contact the first bed before contacting the second bed. The first catalyst bed comprises a first catalyst composition comprising a molecular sieve having a Constraint Index in the range of about 3 to about 12 and at least one metal or compound thereof of Groups 6-10 of the Periodic Table of the Elements, and the second catalyst bed comprises a second catalyst composition comprising a molecular sieve having a Constraint Index less than 3.
    Type: Application
    Filed: December 20, 2010
    Publication date: August 4, 2011
    Inventors: Chunshe Cao, Michel Molinier
  • Patent number: 7781490
    Abstract: The present invention relates to processes for forming mixed alcohols containing methanol and ethanol. The mixed alcohol can then be used as a feedstock for an oxygenate-to-olefin reaction system for conversion thereof to ethylene, propylene, and the like. In addition, the olefins produced by the oxygenate-to-olefin reaction can then be used as monomers for a polymerization of olefin-containing polymers and/or oligomers.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Michel Molinier, Kun Wang
  • Patent number: 7550637
    Abstract: A selective hydrogenation catalyst composition comprises at least two different metal components selected from Groups 8 to 10 of the Periodic Table of Elements, one of which may be rhodium, and at least one metal component selected from Group 13 of the Periodic Table of Elements, such as indium.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: June 23, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder
  • Patent number: 7462751
    Abstract: A selective hydrogenation catalyst composition comprises a support; a first metal component comprising rhodium; and a second metal component comprising a metal other than rhodium and selected from Groups 1 to 15 of the Periodic Table of Elements, wherein said first and second components are predominantly contained in an outer surface layer of the support having a depth of not more than 1000 microns.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: December 9, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder, Valery Sokolovskii
  • Publication number: 20080033218
    Abstract: This invention is directed to a process for making alcohol from syngas, and a process for making olefin, as well as polyolefin, from the alcohol. The syngas is converted to a mixed alcohol stream using a catalyst comprising at least one oxide component. Upon contacting the catalyst with a desired syngas composition, a preferred mixed alcohol product is formed. Preferably, the syngas composition has a stoichiometric molar ratio of less than 2.
    Type: Application
    Filed: June 20, 2007
    Publication date: February 7, 2008
    Inventors: James R. Lattner, Matthew James Vincent, Kun Wang, Michel Molinier, Michael J. Veraa, Anthony F. Volpe, Hailian Li, Jeffrey C. Yoder, Mark Muraoka
  • Publication number: 20070259972
    Abstract: The present invention relates to processes for forming mixed alcohols containing methanol and ethanol. The mixed alcohol can then be used as a feedstock for an oxygenate-to-olefin reaction system for conversion thereof to ethylene, propylene, and the like. In addition, the olefins produced by the oxygenate-to-olefin reaction can then be used as monomers for a polymerization of olefin-containing polymers and/or oligomers.
    Type: Application
    Filed: March 9, 2007
    Publication date: November 8, 2007
    Inventors: James R. Lattner, Michel Molinier, Kun Wang
  • Publication number: 20070244000
    Abstract: This invention is directed to the production of olefin product high in ethylene and propylene content using synthesis gas (syngas) as a feed. The syngas is converted to an intermediate composition high in methanol and dimethyl ether using a catalyst of at least two catalyst components, the first including at least one metal oxide and the second including at least one molecular sieve. The intermediate composition is then contacted with an olefin forming catalyst to form the olefin product.
    Type: Application
    Filed: February 26, 2007
    Publication date: October 18, 2007
    Inventors: Michel Molinier, James R. Lattner, Matthew James Vincent, Kun Wang
  • Publication number: 20070244348
    Abstract: This invention is directed to a process for making an olefin product from a mixed alcohol feed stream. The alcohol product that is formed using this invention contains significant quantities of methanol and ethanol, and is relatively in higher alcohols (i.e., C3+ alcohols) and in branched alcohols. One of the catalysts used to form the mixed alcohol is an oxide-containing catalyst that has been modified to contain a Fischer-Tropsch metal (i.e., cobalt, iron, and nickel).
    Type: Application
    Filed: February 26, 2007
    Publication date: October 18, 2007
    Inventors: Michel Molinier, James R. Lattner, Matthew James Vincent, Kun Wang
  • Patent number: 7220701
    Abstract: A selective hydrogenation catalyst composition comprises a rhodium component present in an amount such that the catalyst composition comprises less than 3.0% of rhodium by weight of the total catalyst composition; and an indium component present in an amount such that the catalyst composition comprises at least 0.3% and less than 5.0% of indium by weight of the total catalyst composition.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder
  • Patent number: 7220700
    Abstract: A selective hydrogenation catalyst composition comprises a support; a first metal component comprising rhodium; and a second metal component comprising a metal other than rhodium and selected from Groups 1 to 15 of the Periodic Table of Elements, wherein said first and second components are predominantly contained in an outer surface layer of the support having a depth of not more than 1000 microns.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Lowe, Michel Molinier, John D. Y. Ou, Michael A. Risch, Anthony F. Volpe, Jr., Jeffrey C. Yoder, Valery Sokolovskii
  • Patent number: 7199273
    Abstract: A process for selectively removing alkynes and/or diolefins from a feedstock also containing olefins comprises contacting the feedstock with hydrogen in the presence of a catalyst composition. The catalyst composition comprises at least one metal component selected from Groups 8 to 10 of the Periodic Table of Elements impregnated on a support, wherein an organic nitrogen-containing compound is contacted with the support before, during or after the metal impregnation.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: April 3, 2007
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Michel Molinier, John Di-Yi Ou, Michael A. Risch
  • Patent number: 7189375
    Abstract: An exhaust treatment device for treating an exhaust gas stream combines the functionalities of a catalytic particulate filter and a NOx absorber catalyst into a single integral device and is disposed in an exhaust conduit. By combining the functionalities of the catalytic particulate filter and a NOx absorber catalyst into a single integral device, the exhaust treatment device eliminates the temperature losses inherent to the heat capacity of one catalytic device placed in front of the other.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: March 13, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: Michel Molinier, Owen H. Bailey
  • Patent number: 7153807
    Abstract: Catalysts have been discovered that are useful in hydrogenation reactions, and particularly for the selective hydrogenation of acetylene and/or methyl acetylene (MA) and/or propadiene (PD) in light olefin-rich feedstreams. These catalysts can selectively hydrogenate acetylene with less selectivity to making oligomers (green oil) as compared with existing commercial catalysts, particularly palladium catalysts. These catalysts are non-palladium catalysts, and have three different constituents that are metal or metal-based components. The metal of the first constituent may be nickel or platinum, the metal of the second constituent may be from Groups 1–10, and the metal of the third constituent may be from Groups 11–12, where the Groups are of the Periodic Table of Elements (new IUPAC notation).
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: December 26, 2006
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Michel Molinier, John Di-Yi Ou, Michael A. Risch
  • Patent number: 7038097
    Abstract: It has been discovered that a dual bed process using two different catalysts for the selective hydrogenation of acetylene and/or methyl acetylene (MA) and/or propadiene (PD) in a light olefin-rich feedstream can be accomplished with less selectivity to making oligomers (green oil) as compared with existing commercial technologies, if a low oligomers selectivity catalyst is used first in the process. A palladium catalyst may be used as a second, sequential catalyst to further hydrogenate acetylene and/or MAPD while consuming at least a portion of the balance of the hydrogen present. The first catalyst should be different from the second catalyst.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: May 2, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michel Molinier, John Di-Yi Ou, Michael A. Risch, John Scott Buchanan
  • Publication number: 20060060505
    Abstract: A selective hydrogenation catalyst composition comprises a rhodium component present in an amount such that the catalyst composition comprises less than 3.0% of rhodium by weight of the total catalyst composition; and an indium component present in an amount such that the catalyst composition comprises at least 0.3% and less than 5.0% of indium by weight of the total catalyst composition.
    Type: Application
    Filed: August 26, 2005
    Publication date: March 23, 2006
    Inventors: David Lowe, Michel Molinier, John Ou, Michael Risch, Anthony Volpe, Jeffrey Yoder
  • Publication number: 20060063954
    Abstract: A selective hydrogenation catalyst composition comprises a support; a first metal component comprising rhodium; and a second metal component comprising a metal other than rhodium and selected from Groups 1 to 15 of the Periodic Table of Elements, wherein said first and second components are predominantly contained in an outer surface layer of the support having a depth of not more than 1000 microns.
    Type: Application
    Filed: August 26, 2005
    Publication date: March 23, 2006
    Inventors: David Lowe, Michel Molinier, John Ou, Michael Risch, Anthony Volpe, Jeffrey Yoder, Valery Sokolovskii
  • Publication number: 20050288538
    Abstract: A selective hydrogenation catalyst composition comprises at least two different metal components selected from Groups 8 to 10 of the Periodic Table of Elements, one of which may be rhodium, and at least one metal component selected from Group 13 of the Periodic Table of Elements, such as indium.
    Type: Application
    Filed: August 15, 2005
    Publication date: December 29, 2005
    Inventors: David Lowe, Michel Molinier, John Ou, Michael Risch, Anthony Volpe, Jeffrey Yoder
  • Publication number: 20050113615
    Abstract: A selective hydrogenation catalyst composition comprises a support; a first metal component comprising rhodium; and a second metal component comprising a metal other than rhodium and selected from Groups 1 to 15 of the Periodic Table of Elements, wherein said first and second components are predominantly contained in an outer surface layer of the support having a depth of not more than 1000 microns.
    Type: Application
    Filed: November 24, 2003
    Publication date: May 26, 2005
    Inventors: David Lowe, Michel Molinier, John Ou, Michael Risch, Anthony Volpe, Jeffrey Yoder, Valery Sokolovskii
  • Publication number: 20050113613
    Abstract: A process for selectively removing alkynes and/or diolefins from a feedstock also containing olefins comprises contacting the feedstock with hydrogen in the presence of a catalyst composition. The catalyst composition comprises at least one metal component selected from Groups 8 to 10 of the Periodic Table of Elements impregnated on a support, wherein an organic nitrogen-containing compound is contacted with the support before, during or after the metal impregnation.
    Type: Application
    Filed: November 24, 2003
    Publication date: May 26, 2005
    Inventors: Michel Molinier, John Ou, Michael Risch