Patents by Inventor Michele Pamela Calos

Michele Pamela Calos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9932607
    Abstract: Methods for inserting a polynucleotide sequence into the genome of a human cell are provided. The present methods result in insertion of a polynucleotide sequence of interest into the H11 locus in the genome of a human cell. Also provided are nucleic acids that include sequences for integrating a polynucleotide sequence of interest into the H11 locus in the genome of a human cell. A transgenic human cell including site specific recombination sites at the H11 locus is also disclosed.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: April 3, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michele Pamela Calos, Ruby Yanru Tsai, Fangfang Zhu, Matthew Gamboa, Alfonso P. Farruggio, Simon Hippenmeyer, Bosiljka Tasic, Birgitt Schüle
  • Publication number: 20150140665
    Abstract: Methods for inserting a polynucleotide sequence into the genome of a human cell are provided. The present methods result in insertion of a polynucleotide sequence of interest into the H11 locus in the genome of a human cell. Also provided are nucleic acids that include sequences for integrating a polynucleotide sequence of interest into the H11 locus in the genome of a human cell. A transgenic human cell including site specific recombination sites at the H11 locus is also disclosed.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Michele Pamela Calos, Ruby Yanru Tsai, Fangfang Zhu, Matthew Gamboa, Alfonso P. Farruggio, Simon Hippenmeyer, Bosiljka Tasic, Birgitt Schüle
  • Patent number: 7732585
    Abstract: The present invention describes methods of identifying altered recombinases and compositions thereof, wherein at least one amino acid is different from a parent, wild-type recombinase and the altered recombinase has improved recombination efficiency towards wild-type and/or pseudo att site sequences relative to the parent, wild-type recombinase. The present invention also includes methods of modifying the genomes of cells using the altered recombinases, including methods of site-specifically integrating a polynucleotide sequence of interest in a genome of a eucaryotic cell.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: June 8, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Michele Pamela Calos
  • Patent number: 7361641
    Abstract: The present invention provides methods of site-specifically integrating a polynucleotide sequence of interest in a genome of a eucaryotic cell, as well as, enzymes, polypeptides, and a variety of vector constructs useful therefore. In the method, a targeting construct comprises, for example, (i) a first recombination site and a polynucleotide sequence of interest, and (ii) a site-specific recombinase, which are introduced into the cell. The genome of the cell comprises a second recombination site. Recombination between the first and second recombination sites is facilitated by the site-specific recombinase. The invention describes compositions, vectors, and methods of use thereof, for the generation of transgenic cells, tissues, plants, and animals. The compositions, vectors, and methods of the present invention are also useful in gene therapy techniques.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: April 22, 2008
    Assignee: The Board of Trustees of The Leland Stanford Junior University
    Inventor: Michele Pamela Calos
  • Patent number: 5707830
    Abstract: The present invention describes an expression vector useful for transfection of a selected mammalian host cell. The vector includes the following components: an Epstein Barr Virus (EBV) family of repeats; a copy of the EBV Nuclear Antigen-1 (EBNA-1) gene that can be functionally expressed in the host cell; a eucaryotic DNA fragment, which provides the ability of the vector to replicate in host cells; and an expression cassette which comprises a promoter functional in said host cell, a coding sequence having 5' and 3' ends, where said coding sequence is functionally linked to said promoter, where said 5' end is adjacent the promoter and said 3' end is adjacent transcription termination sequences. The vector of the present invention is useful in the transfection of mammalian cells, including rodent and human cells. The vector is stably retained and replicates in concert with genomic sequences of the host cell, that is, the vector is typically replicated once per cell cycle.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: January 13, 1998
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Michele Pamela Calos