Patents by Inventor Michelle L. Steen

Michelle L. Steen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8383483
    Abstract: The present invention relates to complementary metal-oxide-semiconductor (CMOS) circuits that each contains at least a first and a second gate stacks. The first gate stack is located over a first device region (e.g., an n-FET device region) in a semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer, a metallic gate conductor, and a silicon-containing gate conductor. The second gate stack is located over a second device region (e.g., a p-FET device region) in the semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer and a silicon-containing gate conductor. The first and second gate stacks can be formed over the semiconductor substrate in an integrated manner by various methods of the present invention.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Glenn A. Biery, Alessandro C. Callegari, Tze-Chiang Chen, Michael P. Chudzik, Bruce B. Doris, Michael A. Gribelyuk, Young-Hee Kim, Barry P. Linder, Vijay Narayanan, Joseph S. Newbury, Vamsi K. Paruchuri, Michelle L. Steen
  • Patent number: 8178433
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. Methods of forming the advanced gate structure are also provided.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: May 15, 2012
    Assignee: International Business Machines Corporation
    Inventors: Glenn A. Biery, Michelle L. Steen
  • Patent number: 8080876
    Abstract: A process and structure for enabling the creation of reliable electrical through-via connections in a semiconductor substrate and a process for filling vias. Problems associated with under etch, over etch and flaring of deep Si RIE etched through-vias are mitigated, thereby vastly improving the integrity of the insulation and metallization layers used to convert the through-vias into highly conductive pathways across the Si wafer thickness. By using an insulating collar structure in the substrate in one case and by filling the via in accordance with the invention in another case, whole wafer yield of electrically conductive through vias is greatly enhanced.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, John U. Knickerbocker, Michelle L. Steen, Cornelia K. Tsang
  • Patent number: 8035173
    Abstract: An NFET containing a first high-k dielectric portion and a PFET containing a second high-k gate dielectric portion are formed on a semiconductor substrate. A gate sidewall nitride is formed on the gate of the NFET, while the sidewalls of the PFET remain free of the gate sidewall nitride. An oxide spacer is formed directly on the sidewalls of a PFET gate stack and on the gate sidewall nitride on the NFET. After high temperature processing, the first and second dielectric portions contain a non-stoichiometric oxygen deficient high-k dielectric material. The semiconductor structure is subjected to an anneal in an oxygen environment, during which oxygen diffuses through the oxide spacer into the second high-k dielectric portion. The PFET comprises a more stoichiometric high-k dielectric material and the NFET comprises a less stoichiometric high-k dielectric material. Threshold voltages of the PFET and the NFET are optimized by the present invention.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Eduard A. Cartier, Bruce B. Doris, Young-Hee Kim, Barry Linder, Vijay Narayanan, Vamsi K. Paruchuri, Michelle L. Steen
  • Patent number: 7919379
    Abstract: The present invention relates to semiconductor devices, and more particularly to a process and structure for removing a dielectric spacer selective to a surface of a semiconductor substrate with substantially no removal of the semiconductor substrate. The method of the present invention can be integrated into a conventional CMOS processing scheme or into a conventional BiCMOS processing scheme. The method includes forming a field effect transistor on a semiconductor substrate, the FET comprising a dielectric spacer and the gate structure, the dielectric spacer located adjacent a sidewall of the gate structure and over a source/drain region in the semiconductor substrate; depositing a first nitride layer over the FET; and removing the nitride layer and the dielectric spacer selective to the semiconductor substrate with substantially no removal of the semiconductor substrate.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: April 5, 2011
    Assignee: International Business Machines Corporation
    Inventors: Eduard A. Cartier, Rashmi Jha, Sivananda Kanakasabapathy, Xi Li, Renee T. Mo, Vijay Narayanan, Vamsi Paruchuri, Mark T. Robson, Kathryn T. Schonenberg, Michelle L. Steen, Richard Wise, Ying Zhang
  • Patent number: 7872317
    Abstract: A semiconductor structure including at least one n-type field effect transistor (nFET) and at least one p-type field effect transistor (pFET) that both include a metal gate having nFET behavior and pFET behavior, respectively, without including an upper polysilicon gate electrode is provided. The present invention also provides a method of fabricating such a semiconductor structure.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: January 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Alessandro C. Callegari, Michael P. Chudzik, Bruce B. Doris, Vijay Narayanan, Vamsi K. Paruchuri, Michelle L. Steen
  • Patent number: 7833849
    Abstract: A method of fabricating semiconductor structure is provided in which at least one nFET device and a least one pFET device are formed on a semiconductor substrate. Each device region formed includes a dielectric stack that has a net dielectric constant equal to or greater than silicon dioxide. Gate stacks are provided on each of the dielectric stacks, wherein one of the gate stacks includes a metal gate electrode located atop a surface of a thinned polygate electrode.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: November 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: Alessandro C. Callegari, Tze-Chiang Chen, Michael P. Chudzik, Bruce B. Doris, Young-Hee Kim, Vijay Narayanan, Vamsi K. Paruchuri, Michelle L. Steen, Ying Zhang
  • Patent number: 7785999
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. A method of forming the advanced gate structure is also provided in which the silicided source and drain regions are formed prior to formation of the silicided metal gate region.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Chester T. Dziobkowski, Sunfei Fang, Evgeni Gousev, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri, Ghavam G. Shahidi, Michelle L. Steen, Clement H. Wann
  • Publication number: 20100148273
    Abstract: An NFET containing a first high-k dielectric portion and a PFET containing a second high-k gate dielectric portion are formed on a semiconductor substrate. A gate sidewall nitride is formed on the gate of the NFET, while the sidewalls of the PFET remain free of the gate sidewall nitride. An oxide spacer is formed directly on the sidewalls of a PFET gate stack and on the gate sidewall nitride on the NFET. After high temperature processing, the first and second dielectric portions contain a non-stoichiometric oxygen deficient high-k dielectric material. The semiconductor structure is subjected to an anneal in an oxygen environment, during which oxygen diffuses through the oxide spacer into the second high-k dielectric portion. The PFET comprises a more stoichiometric high-k dielectric material and the NFET comprises a less stoichiometric high-k dielectric material. Threshold voltages of the PFET and the NFET are optimized by the present invention.
    Type: Application
    Filed: February 25, 2010
    Publication date: June 17, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Eduard A. Cartier, Bruce B. Doris, Young-Hee Kim, Barry Linder, Vijay Narayanan, Vamsi K. Paruchuri, Michelle L. Steen
  • Patent number: 7705405
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. Methods of forming the advanced gate structure are also provided.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Glenn A. Biery, Michelle L. Steen
  • Patent number: 7696036
    Abstract: An NFET containing a first high-k dielectric portion and a PFET containing a second high-k gate dielectric portion are formed on a semiconductor substrate. A gate sidewall nitride is formed on the gate of the NFET, while the sidewalls of the PFET remain free of the gate sidewall nitride. An oxide spacer is formed directly on the sidewalls of a PFET gate stack and on the gate sidewall nitride on the NFET. After high temperature processing, the first and second dielectric portions contain a non-stoichiometric oxygen deficient high-k dielectric material. The semiconductor structure is subjected to an anneal in an oxygen environment, during which oxygen diffuses through the oxide spacer into the second high-k dielectric portion. The PFET comprises a more stoichiometric high-k dielectric material and the NFET comprises a less stoichiometric high-k dielectric material. Threshold voltages of the PFET and the NFET are optimized by the present invention.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Eduard A. Cartier, Bruce B. Doris, Young-Hee Kim, Barry Linder, Vijay Narayanan, Vamsi K. Paruchuri, Michelle L. Steen
  • Publication number: 20100041221
    Abstract: The present invention relates to complementary metal-oxide-semiconductor (CMOS) circuits that each contains at least a first and a second gate stacks. The first gate stack is located over a first device region (e.g., an n-FET device region) in a semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer, a metallic gate conductor, and a silicon-containing gate conductor. The second gate stack is located over a second device region (e.g., a p-FET device region) in the semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer and a silicon-containing gate conductor. The first and second gate stacks can be formed over the semiconductor substrate in an integrated manner by various methods of the present invention.
    Type: Application
    Filed: August 14, 2009
    Publication date: February 18, 2010
    Applicant: International Business Machines Coporation
    Inventors: John C. Arnold, Glenn A. Biery, Alessandro C. Callegari, Tze-Chiang Chen, Michael P. Chudzik, Bruce B. Doris, Michael A. Gribelyuk, Young-Hee Kim, Barry P. Linder, Vijay Narayanan, Joseph S. Newbury, Vamsi K. Paruchuri, Michelle L. Steen
  • Publication number: 20090298244
    Abstract: NFET and PFET devices with separately stressed channel regions, and methods of their fabrication is disclosed. A FET is disclosed which includes a gate, which gate includes a metal in a first state of stress. The FET also includes a channel region hosted in a single crystal Si based material, which channel region is overlaid by the gate and is in a second state of stress. The second state of stress of the channel region is of an opposite sign than the first state of stress of the metal included in the gate. The NFET channel is usually in a tensile state of stress, while the PFET channel is usually in a compressive state of stress. The methods of fabrication include the deposition of metal layers by physical vapor deposition (PVD), in such manner that the layers are in stressed states.
    Type: Application
    Filed: August 7, 2009
    Publication date: December 3, 2009
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Cyril Cabral, JR., Elizabeth A. Duch, Stephen M. Rossnagel, Michelle L. Steen
  • Publication number: 20090283830
    Abstract: A semiconductor structure including at least one n-type field effect transistor (nFET) and at least one p-type field effect transistor (pFET) that both include a metal gate having nFET behavior and pFET behavior, respectively, without including an upper polysilicon gate electrode is provided. The present invention also provides a method of fabricating such a semiconductor structure.
    Type: Application
    Filed: July 23, 2009
    Publication date: November 19, 2009
    Applicant: International Business Machines Corporation
    Inventors: Alessandro C. Callegari, Michael P. Chudzik, Bruce B. Doris, Vijay Narayanan, Vamsi K. Paruchuri, Michelle L. Steen
  • Patent number: 7569466
    Abstract: A semiconductor structure including at least one n-type field effect transistor (nFET) and at least one p-type field effect transistor (pFET) that both include a metal gate having nFET behavior and pFET behavior, respectively, without including an upper polysilicon gate electrode is provided. The present invention also provides a method of fabricating such a semiconductor structure.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: August 4, 2009
    Assignee: International Business Machines Corporation
    Inventors: Alessandro C. Callegari, Michael P. Chudzik, Bruce B. Doris, Vijay Narayanan, Vamsi K. Paruchuri, Michelle L. Steen
  • Publication number: 20090065817
    Abstract: The present invention relates to semiconductor devices, and more particularly to a process and structure for removing a dielectric spacer selective to a surface of a semiconductor substrate with substantially no removal of the semiconductor substrate. The method of the present invention can be integrated into a conventional CMOS processing scheme or into a conventional BiCMOS processing scheme. The method includes forming a field effect transistor on a semiconductor substrate, the FET comprising a dielectric spacer and the gate structure, the dielectric spacer located adjacent a sidewall of the gate structure and over a source/drain region in the semiconductor substrate; depositing a first nitride layer over the FET; and removing the nitride layer and the dielectric spacer selective to the semiconductor substrate with substantially no removal of the semiconductor substrate.
    Type: Application
    Filed: September 10, 2007
    Publication date: March 12, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eduard A. Cartier, Rashmi Jha, Sivananda Kanakasabapathy, Xi Li, Renee T. Mo, Vijay Narayanan, Vamsi Paruchuri, Mark T. Robson, Kathryn T. Schonenberg, Michelle L. Steen, Richard Wise, Ying Zhang
  • Publication number: 20090039436
    Abstract: A CMOS structure is disclosed in which both type of FET devices have gate insulators containing high-k dielectrics, and gates containing metals. The threshold of the two type of devices are adjusted in separate manners. One type of device has its threshold set by exposing the high-k dielectric to oxygen. During the oxygen exposure the other type of device is covered by a stressing dielectric layer, which layer also prevents oxygen penetration to its high-k gate dielectric. The high performance of the CMOS structure is further enhanced by adjusting the effective workfunctions of the gates to near band-edge values both NFET and PFET devices.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 12, 2009
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri, Mark Todhunter Robson, Michelle L. Steen, Ying Zhang
  • Publication number: 20090039472
    Abstract: A process and structure for enabling the creation of reliable electrical through-via connections in a semiconductor substrate and a process for filling vias. Problems associated with under etch, over etch and flaring of deep Si RIE etched through-vias are mitigated, thereby vastly improving the integrity of the insulation and metallization layers used to convert the through-vias into highly conductive pathways across the Si wafer thickness. By using an insulating collar structure in the substrate in one case and by filling the via in accordance with the invention in another case, whole wafer yield of electrically conductive through vias is greatly enhanced.
    Type: Application
    Filed: June 26, 2008
    Publication date: February 12, 2009
    Inventors: Paul S. Andry, John U. Knickerbocker, Michelle L. Steen, Cornelia K. Tsang
  • Publication number: 20090029515
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. Methods of forming the advanced gate structure are also provided.
    Type: Application
    Filed: October 7, 2008
    Publication date: January 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Glenn A. Biery, Michelle L. Steen
  • Patent number: 7473975
    Abstract: A method for forming a semiconductor device structure, comprising the steps of independently forming source/drain surface metal silicide layers and a fully silicided metal gate in a polysilicon gate stack. Specifically, one or more sets of spacer structures are provided along sidewalls of the polysilicon gate stack after formation of the source/drain surface metal silicide layers and before formation of the silicided metal gate, in order to prevent formation of additional metal silicide structures in the source/drain regions during the gate salicidation process. The resulting semiconductor device structure includes a fully silicide metal gate that either comprises a different metal silicide material from that in the source/drain surface metal silicide layers, or has a thickness that is larger than that of the source/drain surface metal silicide layers. The source/drain regions of the semiconductor device structure are devoid of other metal silicide structures besides the surface metal silicide layers.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Glenn A. Biery, Ghavam Shahidi, Michelle L. Steen