Patents by Inventor Michiaki Umeno

Michiaki Umeno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8581016
    Abstract: The present invention provides an industrially practical process where a ketone and an aromatic compound are directly reacted to obtain a corresponding alkylated aromatic compound in a single reaction step. The process for producing an alkylated aromatic compound is characterized in that it comprises reacting an aromatic compound, a ketone and hydrogen in the presence of a solid acid substance and a catalyst composition comprising at least one metal selected from the group consisting of Co, Re, Ni and a platinum group metal.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: November 12, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Toshihiro Takai, Michiaki Umeno, Shinobu Aoki, Terunori Fujita, Tsuneyuki Ohkubo
  • Patent number: 8389784
    Abstract: Ethanol obtained from ordinary biomass resources contains many impurities other than water and these impurities themselves or their decomposition products contaminate ethylene when the ethylene is produced by a dehydration reaction, whereby the activity of metathesis catalyst is adversely affected. A method for producing propylene of the present invention is characterized in that the ethanol obtained from biomass is converted to ethylene by a dehydration reaction, the ethylene is separated from the generated water, the separated ethylene is purified by adsorption in an adsorption tower filled with an adsorbent, and then a metathesis reaction is carried out along with a raw material containing n-butene. With the present invention, propylene having biomass-derived carbon and reduced-environmental burden can be efficiently produced without lowering the catalysis activity.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 5, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Toshihiro Takai, Daisuke Mochizuki, Michiaki Umeno
  • Publication number: 20120142986
    Abstract: Provided is a process for producing an aromatic hydrocarbon efficiently at high yield from a lower hydrocarbon containing methane as a major component, and such a process for producing an aromatic hydrocarbon includes the step of reacting a lower hydrocarbon containing methane as a major component in the presence of a transition-metal-containing crystalline metallosilicate catalyst which is obtainable by supporting 5 to 25 parts by weight of a transition metal (X) on 100 parts by weight of a modified crystalline metallosilicate obtainable by subjecting a crystalline metallosilicate to a series of treatment (A) including a step (i) of eliminating part of a metal from the crystalline metallosilicate and a silylation step (ii).
    Type: Application
    Filed: August 4, 2010
    Publication date: June 7, 2012
    Applicants: AGENCY FOR SCIENCE TECHNOLOGY AND RESEARCH, MITSUI CHEMICALS, INC.
    Inventors: Akihiro Okabe, Yoshimichi Namai, Hideyuki Ito, Satoshi Akiyama, Michiaki Umeno, Takashi Ono, Toru Nishimura
  • Patent number: 8138386
    Abstract: The invention provides methods for converting hydrocarbons as starting material by industrial fixed-bed reaction processes with a zeolite shaped catalyst which has a low content of inorganic binder and a high pore volume and which shows high catalytic activity, long catalyst life and high crushing strength. A zeolite shaped catalyst used in the methods of the invention includes zeolite and an inorganic binder and is obtained by kneading zeolite, a starting material of an inorganic binder, shaping auxiliary(ies), organic polymer particles having an average diameter of 0.1 to 6 ?m and water into a kneaded product, and extruding, drying and calcining the kneaded product; and the zeolite shaped catalyst has a zeolite component content of not less than 60 wt % relative to the total weight, a pore volume of 0.4 to 1.0 ml/g, a half-volume pore diameter of 80 to 500 nm and a crushing strength of not less than 0.9 kg.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: March 20, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Phala Heng, Teruo Muraishi, Michiaki Umeno, Hirokazu Ikenaga
  • Patent number: 7790936
    Abstract: The present invention provides a process in which a ketone is directly reacted with an aromatic compound in a single reaction step to obtain the corresponding alkylated aromatic compound in a higher yield. By reacting an aromatic compound with a ketone and hydrogen in the presence of a solid acid substance and a catalyst composition containing Cu and Zn in a ratio of Zn to Cu ranging from 0.70 to 1.60 (atomic ratio), the corresponding alkylated aromatic compound is prepared.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: September 7, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Toshihiro Takai, Michiaki Umeno, Shinobu Aoki, Terunori Fujita, Tsuneyuki Ohkubo
  • Publication number: 20100063341
    Abstract: The invention provides methods for converting hydrocarbons as starting material by industrial fixed-bed reaction processes with a zeolite shaped catalyst which has a low content of inorganic binder and a high pore volume and which shows high catalytic activity, long catalyst life and high crushing strength. A zeolite shaped catalyst used in the methods of the invention includes zeolite and an inorganic binder and is obtained by kneading zeolite, a starting material of an inorganic binder, shaping auxiliary(ies), organic polymer particles having an average diameter of 0.1 to 6 ?m and water into a kneaded product, and extruding, drying and calcining the kneaded product; and the zeolite shaped catalyst has a zeolite component content of not less than 60 wt % relative to the total weight, a pore volume of 0.4 to 1.0 ml/g, a half-volume pore diameter of 80 to 500 nm and a crushing strength of not less than 0.9 kg.
    Type: Application
    Filed: March 17, 2008
    Publication date: March 11, 2010
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Phala Heng, Teruo Muraishi, Michiaki Umeno, Hirokazu Ikenaga
  • Publication number: 20100022805
    Abstract: The present invention provides a process in which a ketone is directly reacted with an aromatic compound in a single reaction step to obtain the corresponding alkylated aromatic compound in a higher yield. By reacting an aromatic compound with a ketone and hydrogen in the presence of a solid acid substance and a catalyst composition containing Cu and Zn in a ratio of Zn to Cu ranging from 0.70 to 1.60 (atomic ratio), the corresponding alkylated aromatic compound is prepared.
    Type: Application
    Filed: February 12, 2008
    Publication date: January 28, 2010
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Toshihiro Takai, Michiaki Umeno, Shinobu Aoki, Terunori Fujita, Tsuneyuki Ohkubo
  • Publication number: 20100022812
    Abstract: The present invention provides an industrially practical process where a ketone and an aromatic compound are directly reacted to obtain a corresponding alkylated aromatic compound in a single reaction step. The process for producing an alkylated aromatic compound is characterized in that it comprises reacting an aromatic compound, a ketone and hydrogen in the presence of a solid acid substance and a catalyst composition comprising at least one metal selected from the group consisting of Co, Re, Ni and a platinum group metal.
    Type: Application
    Filed: November 1, 2007
    Publication date: January 28, 2010
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Toshihiro Takai, Michiaki Umeno, Shinobu Aoki, Terunori Fujita, Tsuneyuki Ohkubo
  • Publication number: 20080312485
    Abstract: Ethanol obtained from ordinary biomass resources contains many impurities other than water and these impurities themselves or their decomposition products contaminate ethylene when the ethylene is produced by a dehydration reaction, whereby the activity of metathesis catalyst is adversely affected. A method for producing propylene of the present invention is characterized in that the ethanol obtained from biomass is converted to ethylene by a dehydration reaction, the ethylene is separated from the generated water, the separated ethylene is purified by adsorption in an adsorption tower filled with an adsorbent, and then a metathesis reaction is carried out along with a raw material containing n-butene. With the present invention, propylene having biomass-derived carbon and reduced-environmental burden can be efficiently produced without lowering the catalysis activity.
    Type: Application
    Filed: November 13, 2006
    Publication date: December 18, 2008
    Inventors: Toshihiro Takai, Daisuke Mochizuki, Michiaki Umeno
  • Patent number: 6583084
    Abstract: The object of the present invention is to provide a new catalyst for steam reforming of methanol which can provide both sufficient catalyst activity and durability and additionally an efficient method for producing hydrogen with the catalyst, and for that purpose there is provided a catalyst for steam reforming of methanol, characterized by comprising copper and zinc, and palladium and/or platinum, and in that an atomic ratio of copper to palladium and/or platinum is 0.5 to 10 and an atomic ratio of zinc to copper is 0.1 to 10, and a method for producing hydrogen, characterized in that methanol is subjected to steam reforming in the presence of the catalyst.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: June 24, 2003
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Konosuke Hagihara, Michiaki Umeno
  • Publication number: 20020039965
    Abstract: The object of the present invention is to provide a new catalyst for steam reforming of methanol which can provide both sufficient catalyst activity and durability and additionally an efficient method for producing hydrogen with the catalyst, and for that purpose there is provided a catalyst for steam reforming of methanol, characterized by comprising copper and zinc, and palladium and/or platinum, and in that an atomic ratio of copper to palladium and/or platinum is 0.5 to 10 and an atomic ratio of zinc to copper is 0.1 to 10, and a method for producing hydrogen, characterized. in that methanol is subjected to steam reforming in the presence of the catalyst.
    Type: Application
    Filed: July 12, 2001
    Publication date: April 4, 2002
    Inventors: Konosuke Hagihara, Michiaki Umeno
  • Patent number: 6048820
    Abstract: The invention relates to a copper-based catalyst with high activity and a long catalyst life and to a method of producing the catalyst. This catalyst essentially comprises copper oxide, zinc oxide, aluminum oxide, and silicon oxide and optionally containing zirconium oxide, gallium oxide, and palladium oxide, wherein with the total weight of the catalyst being taken as 100%, the above oxides account for, in the order mentioned, 20-60 weight %, 10-50 weight %, 2-10 weight %, 0.3-0.9 weight %, 0-40 weight %, 0-10 weight %, and 0-10 weight %, respectively, and the silicon oxide mentioned above has been derived from colloidal silica or dissolved silica in water, which catalyst has been subjected to calcination at 480-690.degree. C.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: April 11, 2000
    Assignees: Agency of Industrial of Sciences and Technology, The Reseach Institute of Innovative Technology for the Earth
    Inventors: Masami Takeuchi, Hirotaka Mabuse, Taiki Watanabe, Michiaki Umeno, Takashi Matsuda, Kozo Mori, Kenji Ushikoshi, Jamil Toyir, Shengcheng Luo, Jingang Wu, Masahiro Saito
  • Patent number: 5922912
    Abstract: A method is disclosed for the concentration of an aqueous acrylamide solution prepared by hydration of acrylonitrile or an aqueous acrylamide solution substantially free of acrylonitrile. The method makes use of a concentration apparatus at least a part of whose solution-contacting section is made of a copper-containing material. The concentration is conducted while introducing an oxygen-containing gas into the apparatus. Use of this method can prevent formation, adhering, accumulation and the like of popcorn polymers inside the concentration apparatus upon concentration of the aqueous acrylamide solution, and can also produce high-quality acrylamide.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: July 13, 1999
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yoshihiko Kambara, Mutsuo Matsumura, Michiaki Umeno, Yoshikazu Uehara, Koichi Asao