Patents by Inventor MICHIEL SOER

MICHIEL SOER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210344376
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER
  • Patent number: 11159202
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: October 26, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Patent number: 11095338
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: August 17, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Patent number: 11070248
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: July 20, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Publication number: 20210203379
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER, RABIA RASSIL
  • Patent number: 10951264
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: March 16, 2021
    Assignee: Transfert Plus, Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer, Rabia Rassil
  • Patent number: 10879955
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 29, 2020
    Assignee: Transfert Plus, Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Publication number: 20200358474
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER, RABIA RASSIL
  • Patent number: 10742261
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: August 11, 2020
    Assignee: Transfert Plus, Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer, Rabia Rassil
  • Publication number: 20200119766
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER, RABIA RASSIL
  • Patent number: 10608699
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: March 31, 2020
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Publication number: 20190215030
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
    Type: Application
    Filed: June 29, 2018
    Publication date: July 11, 2019
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER, RABIA RASSIL
  • Publication number: 20190173520
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Application
    Filed: January 30, 2019
    Publication date: June 6, 2019
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER
  • Publication number: 20190173519
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Application
    Filed: January 29, 2019
    Publication date: June 6, 2019
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER
  • Publication number: 20190165829
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER
  • Publication number: 20190165828
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER
  • Publication number: 20180175905
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Application
    Filed: May 31, 2016
    Publication date: June 21, 2018
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERSZADEH-SANI, MICHIEL SOER