Patents by Inventor Michinobu Mieda

Michinobu Mieda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5838645
    Abstract: A magneto-optical disk provided with a record layer having a recording magnetic domain where data are recorded, an auxiliary reproduction layer for transferring the record data in the record layer to a reproduction layer by generating a floating magnetic field corresponding to the data in the record layer, and the reproduction layer from which the data are read out through irradiation of a light beam, which are sequentially layered while interposing nonmagnetic intermediate layers therebetween. The stable magnetic domain width in the auxiliary reproduction layer is shorter than the recording magnetic domain width at room temperature and extends as the temperature rises and becomes longer at or above a first temperature. The stable magnetic domain width in the reproduction layer is longer than the recording magnetic domain width at room temperature and lessens as the temperature rises and becomes shorter at or above a second temperature which is lower than the first temperature.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: November 17, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junji Hirokane, Michinobu Mieda, Junichiro Nakayama, Akira Takahashi
  • Patent number: 5822282
    Abstract: A magneto-optical recording medium has at least a substrate, a first magnetic layer, a second magnetic layer, and a first interface layer provided between the first and second magnetic layers. The first magnetic layer exhibits a perpendicular magnetic anisotropy from room temperature to a Curie temperature thereof. The second magnetic layer has a coercive force lower than A: that of the first magnetic layer at room temperature, has a Curie temperature higher than that of the first magnetic layer, and exhibits a perpendicular magnetic anisotropy from room temperature to a Curie temperature of the second magnetic layer. The first interface layer is made of at least one rare-earth metal and has a thickness of several atoms. With this arrangement, it is possible (1) to carry out light modulation overwriting with respect to the magneto-optical recording medium, (2) to carry out initialization without an initializing magnetic field, and (3) to stabilize recording bits.
    Type: Grant
    Filed: January 7, 1997
    Date of Patent: October 13, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junichiro Nakayama, Michinobu Mieda, Junji Hirokane, Akira Takahashi
  • Patent number: 5787056
    Abstract: If the Curie points of the first magnetic layer, second magnetic layer, third magnetic layer and fourth magnetic layer of alloys of rare-earth metal and transition metal as ferrimagnetic materials showing perpendicular magnetization from room temperature to their Curie points are indicated as Tc1, Tc2, Tc3 and Tc4, respectively, the Curie points and room temperature are related by: room temperature<Tc3<Tc4<Tc1<Tc2. If the sublattice magnetization of transition metal is indicated as .alpha. and the sublattice magnetization of rare-earth metal is .beta., .alpha. is stronger than .beta. in the second magnetic layer at temperatures between Tc1 and Tc2, and .beta. is stronger than .alpha. in the fourth magnetic layer at temperatures between room temperature and Tc4.
    Type: Grant
    Filed: December 13, 1996
    Date of Patent: July 28, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junichiro Nakayama, Michinobu Mieda, Junji Hirokane, Akira Takahashi
  • Patent number: 5754523
    Abstract: In an optical memory medium comprising prepits on which a light spot is impinged to obtain information and, if required, guide grooves: each of those among the prepits which are longer than the diameter of the light spot consists of a series of pit portions and unpitted portions; each of the prepits is sandwiched between two of the discontinuous portions of guide grooves adjacent to each other; the guide grooves have one or more narrow portions, and each of the prepits is sandwiched between two of the narrow portions of guide grooves adjacent to each other; or the guide grooves have one or more long portions, one or more short portions, and narrow portions formed between the long and short portions, and each of the prepits is sandwiched between two of the short portions of guide grooves adjacent to each other.
    Type: Grant
    Filed: September 27, 1995
    Date of Patent: May 19, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshihisa Deguchi, Kenji Ohta, Akira Takahashi, Kazuo Van, Michinobu Mieda, Tetsuya Inui
  • Patent number: 5719831
    Abstract: A magneto-optical disk cartridge includes a magnet which is magnetized substantially parallel to a surface of a magneto-optical disk for generating an initializing magnetic field. This structure permits a reduction in the thickness of the magneto-optical disk cartridge.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: February 17, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junichiro Nakayama, Michinobu Mieda, Hiroyuki Katayama, Akira Takahashi, Kenji Ohta
  • Patent number: 5707727
    Abstract: A magneto-optical recording medium has a recording layer whereon information is magneto-optically recorded. A readout layer is provided on the recording layer. The readout layer has a compensating temperature that is located between room temperature and the Curie temperature. In the readout layer, upon an application of a light beam, the in-plane magnetization occurs at room temperature and a transition from the in-plane magnetization to vertical magnetization occurs as the temperature of the irradiated area of the readout layer rises above a predetermined temperature. By employing this magneto-optical recording medium, with an application of a light beam that is intensity modulated into two levels, only a spot having a temperature not less than a predetermined temperature is involved in the reproduction; therefore, a recorded bit with a size smaller than the diameter of the light beam can be reproduced, thereby greatly increasing the recording density.
    Type: Grant
    Filed: February 27, 1995
    Date of Patent: January 13, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Akira Takahashi, Yoshiteru Murakami, Junsaku Nakajima, Kenji Ohta, Junichiro Nakayama, Hiroyuki Katayama, Michinobu Mieda
  • Patent number: 5684764
    Abstract: A magneto-optical disk provided with a record layer having a recording magnetic domain where data are recorded, an auxiliary reproduction layer for transferring the record data in the record layer to a reproduction layer by generating a floating magnetic field corresponding to the data in the record layer, and the reproduction layer from which the data are read out through irradiation of a light beam, which are sequentially layered while interposing non-magnetic intermediate layers therebetween. The stable magnetic domain width in the auxiliary reproduction layer is shorter than the recording magnetic domain width at room temperature and extends as the temperature rises and becomes longer at or above a first temperature. The stable magnetic domain width in the reproduction layer is longer than the recording magnetic domain width at room temperature and lessens as the temperature rises and becomes shorter at or above a second temperature which is lower than the first temperature.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: November 4, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junji Hirokane, Michinobu Mieda, Junichiro Nakayama, Akira Takahashi
  • Patent number: 5683803
    Abstract: A magneto-optical recording medium includes a first magnetic layer and a second magnetic layer being laminated. When information is to be recorded on the first magnetic layer, first, a magnetization direction in the second magnetic layer is arranged in one direction with an application of an initialization magnetic field. Then, an intensity modulated light beam is projected while applying thereto a recording magnetic field so as to change the magnetization direction in the second magnetic layer. Thereafter, the magnetization direction in the second magnetic layer is copied to the first magnetic layer, thereby recording information. The first magnetic layer has a magnetization in an intermediate direction between a perpendicular direction and an in-plane direction at room temperature, while has a perpendicular magnetization at above a predetermined temperature.
    Type: Grant
    Filed: May 3, 1995
    Date of Patent: November 4, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junichiro Nakayama, Michinobu Mieda, Junji Hirokane, Akira Takahashi, Kenji Ohta
  • Patent number: 5676854
    Abstract: A transparent substrate of an optical memory is produced by injection molding using a stamper. Grooves and lands are alternately arranged on the optical memory, for tracking of light converged on the optical memory. The groove width is set in the range of 0.3 .mu.m to 0.4 .mu.m and the groove depth is set in the rage of 80 nm to 100 nm. A decrease in the width of a land at each edge is restrained to 0.2 .mu.m in maximum. With such dimensions, even when the track pitch is set to about 1.4 .mu.m, it is possible to obtain a track crossing signal with intensity sufficient for performing an access operation to a target track. Moreover, since the dimensions bring about an improved reflectance at a land, the optical memory achieves an improved C/N and recording density.
    Type: Grant
    Filed: August 1, 1996
    Date of Patent: October 14, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tetsuya Inui, Akira Takahashi, Kenji Ohta, Michinobu Mieda, Yoshiteru Murakami
  • Patent number: 5673250
    Abstract: Grooves and lands are provided to a magneto-optical disk so as to be alternately arranged, and recording bit strings are formed on the grooves and lands respectively so that information is recorded. Moreover, pit rows are formed on boundary sections between the adjoining grooves and lands so that address information of a recording/reproducing track is recorded, and the pit rows are formed every other boundary section. When the grooves and the lands are scanned as the recording/reproducing track by a light, an address of the recording/reproducing track is read out from the pit rows, and successively, discrimination is made whether the recording/reproducing track which is scanned by an optical spot is the groove or the land. This prevents crosstalk which causes inclusion of address information in the next pit rows, thereby, making it possible to obtain accurate address information.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: September 30, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Michinobu Mieda, Junji Hirokane, Akira Takahashi, Kenji Ohta, Shigeo Terashima
  • Patent number: 5666332
    Abstract: A magneto-optical recording medium with a first, second, and third magnetic layers which are laminated on a substrate. The first magnetic layer has a perpendicular magnetization in a temperature range between room temperature and its Curie temperature. The second magnetic layer has an in-plane magnetization at room temperature, and has a perpendicular magnetization at or above a temperature falling within a range between room temperature and its Curie temperature. The third magnetic layer has an in-plane magnetization at room temperature, and has a perpendicular magnetization at or above a temperature falling within a range between room temperature and the temperature at which a transition occurs in the second magnetic layer from the in-plane magnetization to the perpendicular magnetization.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: September 9, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junichiro Nakayama, Michinobu Mieda, Junji Hirokane, Akira Takahashi
  • Patent number: 5665467
    Abstract: A magneto-optical recording medium includes a first magnetic layer, a second magnetic layer and a third magnetic layer respectively made of rare-earth-transition metal alloys which are laminated in this order. The first magnetic layer has a perpendicular magnetization in a temperature range between room temperature and its Curie temperature. The second magnetic layer made of GdFeCo is set such that its Curie temperature is higher than the Curie temperature of the first magnetic layer, coercive force thereof at room temperature is nearly zero, and that it has an in-plane magnetization at room temperature and a transition occurs therein from the in-plane magnetization to the perpendicular magnetization at above a predetermined temperature.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: September 9, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junichiro Nakayama, Michinobu Mieda, Hiroyuki Katayama, Akira Takahashi, Kenji Ohta
  • Patent number: 5659537
    Abstract: A recording layer including a recording magnetic domain for recording thereon information is formed. A reproducing layer for reproducing information by projecting thereto a light beam is formed on the recording layer. A non-magnetic intermediate layer for intercepting a magnetic exchange coupling force exerted between the recording layer and the reproducing layer is formed between the recording layer and the reproducing layer. The reproducing layer is arranged such that the width of the stable magnetic domain on the reproducing layer at room temperature is larger than the width of the recording magnetic domain in the recording layer. At a reproducing temperature by the light beam, the width of the stable magnetic domain becomes smaller than the width of the recording magnetic domain, and the information is copied by the leakage magnetic flux of the recording magnetic domain.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: August 19, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junji Hirokane, Junichiro Nakayama, Michinobu Mieda, Akira Takahashi
  • Patent number: 5644566
    Abstract: An intermediate layer is formed between a memory layer and a writing layer. The intermediate layer shows in-plane magnetization at room temperature, and perpendicular magnetization within a temperature range within which the coercive force of the memory layer is lower than that of the writing layer. The Curie point of the intermediate layer is lower than that of the memory layer. Like a conventional method, light-intensity modulation overwriting is performed by irradiating laser light whose intensity has been modulated between high level and low level while applying a recording magnetic field after performing an initialization. Even when there are variations in the raised temperature by the irradiation of laser light of high level, it is possible to perform stable overwriting with light-intensity modulation by satisfactorily restraining the exchange forces between the intermediate layer and the writing layer from causing coupling.
    Type: Grant
    Filed: May 2, 1995
    Date of Patent: July 1, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junichiro Nakayama, Michinobu Mieda, Hiroyuki Katayama, Junji Hirokane, Akira Takahashi, Kenji Ohta
  • Patent number: 5640374
    Abstract: A recording layer having a recording magnetic domain for recording thereon information is formed. A readout layer for reading the information by the application of a light beam is formed on the recording layer. An intermediate layer made of a film having in-plane magnetization is formed between the recording layer and readout layer to control a magnetic exchange coupling force between the recording layer and readout layer. The readout layer is arranged so that the stable magnetic domain width in the readout layer is larger than that of the recording magnetic domain in the recording layer at room temperature. At a readout temperature achieved by the light beam, the stable magnetic domain width becomes smaller than that of the recording magnetic domain, and the magnetization direction in the recording magnetic domain is copied.
    Type: Grant
    Filed: June 6, 1996
    Date of Patent: June 17, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junji Hirokane, Michinobu Mieda, Junichiro Nakayama, Akira Takahashi
  • Patent number: 5635296
    Abstract: A magneto-optical recording medium includes a first magnetic layer, a second magnetic layer and a third magnetic layer respectively made of rare earth-transition metal alloys. The first magnetic layer has a perpendicular magnetization in a temperature range between room temperature and its Curie temperature. The second magnetic layer has its Curie temperature higher than that of the first magnetic layer, and coercive force thereof at room temperature is nearly zero. The third magnetic layer has a perpendicular magnetization in a temperature range between room temperature and its Curie temperature. The Curie temperature of the third magnetic layer is higher than the Curie temperature of the first magnetic layer. The coercive force of the third magnetic layer at room temperature is lower than that of the first magnetic layer. The compensation temperature of the third magnetic layer is higher than that of the second magnetic layer.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: June 3, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junichiro Nakayama, Michinobu Mieda, Hiroyuki Katayama, Akira Takahashi, Kenji Ohta
  • Patent number: 5633838
    Abstract: A non-magnetic intermediate layer is provided between a reproductive layer and a recording layer. The reproductive layer is composed of a first reproductive layer and a second reproductive layer. When the first reproductive layer has a temperature that is higher than a first critical temperature, its stable magnetic domain width becomes smaller than a recording magnetic domain width so that the magnetization is reversed. When the second reproductive layer has a temperature that is higher than a second critical temperature, its stable magnetic domain width becomes larger than the recording magnetic domain width so that the reversed magnetic domain is collapsed. The first critical temperature is lower than the second critical temperature. A reproductive output having abrupt rising and falling can be obtained by the generation and the collapse of the reverse magnetic domain on the reproductive layer. For this reason, higher density recording required for larger capacity can be achieved.
    Type: Grant
    Filed: January 3, 1996
    Date of Patent: May 27, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junji Hirokane, Junichiro Nakayama, Michinobu Mieda, Akira Takahashi
  • Patent number: 5629908
    Abstract: A magneto-optical recording medium comprising a readout layer, an intermediate layer, and a recording layer. Two light beams having high and low light intensities respectively are applied while applying an external magnetic field. The magnetization direction of the recording layer is changed according to information, by reversing the sub-lattice magnetic moment of the readout layer in the case of the high light intensity. The intermediate layer exhibits a perpendicular magnetization during the irradiation, and also exhibits an in-plane magnetization at room temperature. Since it is not necessary to provide a device for generating a magnetic field for initializing every recording, it is possible to avoid increase in the size of the recording and reproducing apparatus. Moreover, the magnetization direction of the readout layer can be easily controlled with an external magnetic field, and the optical modulation overwriting property can be stabilized.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: May 13, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junji Hirokane, Junichiro Nakayama, Michinobu Mieda, Akira Takahashi
  • Patent number: 5615180
    Abstract: A magneto-optical disk is provided with a recording layer that exhibits perpendicular magnetization, an intermediate layer wherein in-plane magnetization occurs at room temperature and a transition from the in-plane magnetization to perpendicular magnetization occurs as the temperature thereof rises, and an auxiliary layer that is made of a rare-earth-transition-metal alloy and that exhibits perpendicular magnetization, and these layers are laminated in this order. The composition of the rare-earth-transition-metal alloy is set so that the magnetic moment of the rare-earth metal is relatively greater than that of the transition metal at room temperature and the compensation temperature is located between room temperature and the Curie temperature T.sub.c3. A magneto-optical recording apparatus for rewriting information on the magneto-optical disk is provided with a single magnet for applying H.sub.w onto a portion on the magneto-optical disk irradiated by a light beam, as well as for applying H.sub.
    Type: Grant
    Filed: February 18, 1994
    Date of Patent: March 25, 1997
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Michinobu Mieda, Junichiro Nakayama, Hiroyuki Katayama, Akira Takahashi, Kenji Ohta
  • Patent number: 5586109
    Abstract: A transparent substrate of an optical memory is produced by injection molding using a stamper. Grooves and lands are alternately arranged on the optical memory, for tracking of light converged on the optical memory. The groove width is set in the range of 0.3 .mu.m to 0.4 .mu.m and the groove depth is set in the rage of 80 nm to 100 nm. A decrease in the width of a land at each edge is restrained to 0.2 .mu.m in maximum. With such dimensions, even when the track pitch is set to about 1.4 .mu.m, it is possible to obtain a track crossing signal with intensity sufficient for performing an access operation to a target track. Moreover, since the dimensions bring about an improved reflectance at a land, the optical memory achieves an improved C/N and recording density.
    Type: Grant
    Filed: December 12, 1994
    Date of Patent: December 17, 1996
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tetsuya Inui, Akira Takahashi, Kenji Ohta, Michinobu Mieda, Yoshiteru Murakami