Patents by Inventor Michiru Kubata

Michiru Kubata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11183702
    Abstract: A cell that includes a positive electrode, a negative electrode and a membrane interposed between the electrodes, and that is used in a redox flow battery, wherein the membrane includes an ion permeable portion that is permeable to hydrogen ions, at least at a center of the membrane in a plan view, planar areas of the positive electrode and the negative electrode are both 250 cm2 or more, and a planar area of the ion permeable portion is smaller than each of the planar areas of the positive electrode and the negative electrode, and, in the ion permeable portion, a planar area of a facing portion that actually faces the positive electrode and the negative electrode is 50% or more and 99.9% or less of a smaller of the planar areas of the positive electrode and the negative electrode.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: November 23, 2021
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Michiru Kubata, Masahiro Kuwabara
  • Publication number: 20210005917
    Abstract: A cell that includes a positive electrode, a negative electrode and a membrane interposed between the electrodes, and that is used in a redox flow battery, wherein the membrane includes an ion permeable portion that is permeable to hydrogen ions, at least at a center of the membrane in a plan view, planar areas of the positive electrode and the negative electrode are both 250 cm2 or more, and a planar area of the ion permeable portion is smaller than each of the planar areas of the positive electrode and the negative electrode, and, in the ion permeable portion, a planar area of a facing portion that actually faces the positive electrode and the negative electrode is 50% or more and 99.9% or less of a smaller of the planar areas of the positive electrode and the negative electrode.
    Type: Application
    Filed: March 9, 2018
    Publication date: January 7, 2021
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Michiru KUBATA, Masahiro KUWABARA
  • Patent number: 9799906
    Abstract: An object of the present invention is to provide a redox flow secondary battery being low in the electric resistance and excellent in the current efficiency as well, and further having the durability. The present invention relates to an electrolyte membrane for a redox flow secondary battery, the electrolyte membrane containing an ion-exchange resin composition containing a fluorine-based polyelectrolyte polymer, and having an ion cluster diameter of 1.00 to 2.95 nm as measured in water at 25° C. by a small angle X-ray method, and to a redox flow secondary battery using the electrolyte membrane.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: October 24, 2017
    Assignees: ASAHI KASEI KABUSHIKI KAISHA, SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Naoto Miyake, Kiyoaki Moriuchi, Michiru Kubata
  • Patent number: 9647290
    Abstract: Provided is an electrolyte for a redox flow battery, the electrolyte allowing suppression of generation of precipitate during a battery reaction. In the electrolyte for a redox flow battery, the total concentration of impurity element ions contributing to generation of precipitate during a battery reaction is 220 mass ppm or less. In a case where the impurity element ions contributing to generation of precipitate include metal element ions, the total concentration of the metal element ions may be 195 mass ppm or less. In a case where the impurity element ions contributing to generation of precipitate include non-metal element ions, the total concentration of the non-metal element ions may be 21 mass ppm or less.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: May 9, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Ryojun Sekine, Yongrong Dong, Michiru Kubata, Hirokazu Kaku
  • Patent number: 9595731
    Abstract: Provided is an electrolyte for a redox flow battery, the electrolyte allowing suppression of generation of precipitate during a battery reaction. In the electrolyte for a redox flow battery, the total concentration of impurity element ions contributing to generation of precipitate during a battery reaction is 220 mass ppm or less. In a case where the impurity element ions contributing to generation of precipitate include metal element ions, the total concentration of the metal element ions may be 195 mass ppm or less. In a case where the impurity element ions contributing to generation of precipitate include non-metal element ions, the total concentration of the non-metal element ions may be 21 mass ppm or less.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: March 14, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Ryojun Sekine, Yongrong Dong, Michiru Kubata, Hirokazu Kaku
  • Patent number: 9391340
    Abstract: Provided are an electrolyte for a redox flow battery, the electrolyte allowing suppression of generation of hydrogen during a battery reaction; and a redox flow battery including the electrolyte. In the electrolyte for a redox flow battery, the total concentration of platinum-group element ions is 4.5 mass ppm or less. The platinum-group element ions may satisfy in terms of concentration at least one of those described below: the concentration of rhodium ions is 1 mass ppm or less, the concentration of palladium ions is 1 mass ppm or less, the concentration of iridium ions is 1 mass ppm or less, and the concentration of platinum ions is 1 mass ppm or less.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: July 12, 2016
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yongrong Dong, Ryojun Sekine, Hirokazu Kaku, Michiru Kubata
  • Patent number: 9331356
    Abstract: Provided are an electrolyte for a redox flow battery, the electrolyte allowing suppression of generation of precipitate and suppression of generation of hydrogen during a battery reaction; and a redox flow battery including the electrolyte. In the electrolyte for a redox flow battery, the total concentration of impurity element ions contributing to generation of precipitate during a battery reaction is 220 mass ppm or less, and the total concentration of platinum-group element ions is 4.5 mass ppm or less. In a case where the impurity element ions contributing to generation of precipitate include metal element ions, the total concentration of the metal element ions may be 195 mass ppm or less.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: May 3, 2016
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yongrong Dong, Ryojun Sekine, Hirokazu Kaku, Michiru Kubata
  • Publication number: 20150325873
    Abstract: Provided are an electrolyte for a redox flow battery, the electrolyte allowing suppression of generation of precipitate and suppression of generation of hydrogen during a battery reaction; and a redox flow battery including the electrolyte. In the electrolyte for a redox flow battery, the total concentration of impurity element ions contributing to generation of precipitate during a battery reaction is 220 mass ppm or less, and the total concentration of platinum-group element ions is 4.5 mass ppm or less. In a case where the impurity element ions contributing to generation of precipitate include metal element ions, the total concentration of the metal element ions may be 195 mass ppm or less.
    Type: Application
    Filed: August 7, 2013
    Publication date: November 12, 2015
    Inventors: Yongrong DONG, Ryojun SEKINE, Hirokazu KAKU, Michiru KUBATA
  • Patent number: 9118064
    Abstract: Provided are a redox flow battery (RF battery) in which a positive electrode electrolyte and a negative electrode electrolyte are supplied to a battery cell including a positive electrode, a negative electrode, and a membrane, to charge and discharge the battery, and a method of operating the RF battery. The positive electrode electrolyte contains a manganese ion, or both of a manganese ion and a titanium ion. The negative electrode electrolyte contains at least one type of metal ion selected from a titanium ion, a vanadium ion, a chromium ion, a zinc ion, and a tin ion. The RF battery can have a high electromotive force and can suppress generation of a precipitation of MnO2 by containing a titanium ion in the positive electrode electrolyte, or by being operated such that the positive electrode electrolyte has an SOC of not more than 90%.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: August 25, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yongrong Dong, Toshio Shigematsu, Takahiro Kumamoto, Michiru Kubata
  • Publication number: 20150228997
    Abstract: Provided are an electrolyte for a redox flow battery, the electrolyte allowing suppression of generation of hydrogen during a battery reaction; and a redox flow battery including the electrolyte. In the electrolyte for a redox flow battery, the total concentration of platinum-group element ions is 4.5 mass ppm or less. The platinum-group element ions may satisfy in terms of concentration at least one of those described below: the concentration of rhodium ions is 1 mass ppm or less, the concentration of palladium ions is 1 mass ppm or less, the concentration of iridium ions is 1 mass ppm or less, and the concentration of platinum ions is 1 mass ppm or less.
    Type: Application
    Filed: August 7, 2013
    Publication date: August 13, 2015
    Inventors: Yongrong Dong, Ryojun Sekine, Hirokazu Kaku, Michiru Kubata
  • Publication number: 20150221969
    Abstract: Provided is an electrolyte for a redox flow battery, the electrolyte allowing suppression of generation of precipitate during a battery reaction. In the electrolyte for a redox flow battery, the total concentration of impurity element ions contributing to generation of precipitate during a battery reaction is 220 mass ppm or less. In a case where the impurity element ions contributing to generation of precipitate include metal element ions, the total concentration of the metal element ions may be 195 mass ppm or less. In a case where the impurity element ions contributing to generation of precipitate include non-metal element ions, the total concentration of the non-metal element ions may be 21 mass ppm or less.
    Type: Application
    Filed: August 7, 2013
    Publication date: August 6, 2015
    Inventors: Ryojun Sekine, Yongrong Dong, Michiru Kubata, Hirokazu Kaku
  • Publication number: 20140377687
    Abstract: An object of the present invention is to provide a redox flow secondary battery being low in the electric resistance and excellent in the current efficiency as well, and further having the durability. The present invention relates to an electrolyte membrane for a redox flow secondary battery, the electrolyte membrane containing an ion-exchange resin composition containing a fluorine-based polyelectrolyte polymer, and having an ion cluster diameter of 1.00 to 2.95 nm as measured in water at 25° C. by a small angle X-ray method, and to a redox flow secondary battery using the electrolyte membrane.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 25, 2014
    Inventors: Naoto Miyake, Kiyoaki Moriuchi, Michiru Kubata
  • Publication number: 20130045400
    Abstract: Provided are a redox flow battery (RF battery) in which a positive electrode electrolyte and a negative electrode electrolyte are supplied to a battery cell including a positive electrode, a negative electrode, and a membrane, to charge and discharge the battery, and a method of operating the RF battery. The positive electrode electrolyte contains a manganese ion, or both of a manganese ion and a titanium ion. The negative electrode electrolyte contains at least one type of metal ion selected from a titanium ion, a vanadium ion, a chromium ion, a zinc ion, and a tin ion. The RF battery can have a high electromotive force and can suppress generation of a precipitation of MnO2 by containing a titanium ion in the positive electrode electrolyte, or by being operated such that the positive electrode electrolyte has an SOC of not more than 90%.
    Type: Application
    Filed: March 8, 2011
    Publication date: February 21, 2013
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yongrong Dong, Toshio Shigematsu, Takahiro Kumamoto, Michiru Kubata
  • Patent number: 8288030
    Abstract: A redox flow battery having a high electromotive force and capable of suppressing generation of a precipitation is provided. In a redox flow battery 100, a positive electrode electrolyte and a negative electrode electrolyte are supplied to a battery cell including a positive electrode 104, a negative electrode 105, and a membrane 101 interposed between the electrodes 104 and 105, to charge and discharge the battery. The positive electrode electrolyte contains a manganese ion, or both of a manganese ion and a titanium ion. The negative electrode electrolyte contains at least one type of metal ion selected from a titanium ion, a vanadium ion, a chromium ion, a zinc ion, and a tin ion. The redox flow battery 100 can suppress generation of a precipitation of MnO2, and can be charged and discharged well by containing a titanium ion in the positive electrode electrolyte, or by being operated such that the positive electrode electrolyte has an SOC of not more than 90%.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: October 16, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yongrong Dong, Toshio Shigematsu, Takahiro Kumamoto, Michiru Kubata
  • Publication number: 20120045680
    Abstract: A redox flow battery having a high electromotive force and capable of suppressing generation of a precipitation is provided. In a redox flow battery 100, a positive electrode electrolyte and a negative electrode electrolyte are supplied to a battery cell including a positive electrode 104, a negative electrode 105, and a membrane 101 interposed between the electrodes 104 and 105, to charge and discharge the battery. The positive electrode electrolyte contains a manganese ion, or both of a manganese ion and a titanium ion. The negative electrode electrolyte contains at least one type of metal ion selected from a titanium ion, a vanadium ion, a chromium ion, a zinc ion, and a tin ion. The redox flow battery 100 can suppress generation of a precipitation of MnO2, and can be charged and discharged well by containing a titanium ion in the positive electrode electrolyte, or by being operated such that the positive electrode electrolyte has an SOC of not more than 90%.
    Type: Application
    Filed: September 10, 2010
    Publication date: February 23, 2012
    Inventors: Yongrong Dong, Toshio Shigematsu, Takahiro Kumamoto, Michiru Kubata
  • Patent number: 7258947
    Abstract: The present invention provides electrolyte that can suppress reduction of battery efficiencies and capacities with increased cycles of charge/discharge of the battery, a method for producing the same, and a redox flow battery using the same electrolyte. The redox flow battery uses the electrolyte having a NH4 content of not more than 20 ppm and a relation of Si concentration (ppm)×electrolyte quantity (m3)/electrode area (m2) of less than 5 ppm·m3/m2. By limiting a quantity of contaminants in the electrolyte, a clogging of carbon electrodes to cause reduction of the battery performances with increased charge/discharge operations can be suppressed.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: August 21, 2007
    Assignees: Sumitomo Electric Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Michiru Kubata, Hiroyuki Nakaishi, Nobuyuki Tokuda
  • Patent number: 6872376
    Abstract: A modified vanadium compound characterized in that vanadium sulfate (III), or a mixed vanadium compound of vanadium sulfate (III) and vanadyl sulfate (IV) contains excessive sulfuric acid other than sulfate group composing the vanadium sulfate (III) or the vanadyl sulfate (IV), and when the modified vanadium compound is used, a redox flow battery electrolyte can be prepared easily.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: March 29, 2005
    Assignees: Nippon Chemical Industrial Co., Ltd., Kansai Electric Power Co., Inc., Sumitomo Electric Industries, Ltd
    Inventors: Yasuyuki Tanaka, Muneo Mita, Ken Horikawa, Nobuyuki Tokuda, Masayuki Furuya, Michiru Kubata
  • Publication number: 20040191623
    Abstract: The present invention provides electrolyte that can suppress reduction of battery efficiencies and capacities with increased cycles of charge/discharge of the battery, a method for producing the same, and a redox flow battery using the same electrolyte. The redox flow battery uses the electrolyte having a NH4 content of not more than 20 ppm and a relation of Si concentration (ppm)×electrolyte quantity (m3)/electrode area (m2) of less than 5 ppm·m3/m2. By limiting a quantity of contaminants in the electrolyte, a clogging of carbon electrodes to cause reduction of the battery performances with increased charge/discharge operations can be suppressed.
    Type: Application
    Filed: April 22, 2004
    Publication date: September 30, 2004
    Inventors: Michiru Kubata, Hiroyuki Nakaishi, Nobuyuki Tokuda
  • Patent number: 6613298
    Abstract: The present invention provides method of producing a trivalent and tetravalent mixed vanadium compound having excellent solubility with sulfuric acid directly from a tetravalent or pentavalent vanadium compound by using a reducing agent,and a method of producing a vanadium electrolyte. For example, a vanadium compound mainly containing a pentavalent vanadium compound; sulfur and concentrated sulfuric acid in molar ratios with respect to (one mol of vanadium atom in the pentavalent vanadium compound) 0.35 to 0.4:1.2 to 1.9 are kneaded into paste form, and the paste-form mixture is calcined at a temperature of not less than 150° C. to less than 440° C. so that a trivalent and tetravalent mixed vanadium compound is obtained, and a redox flow battery-use vanadium electrolyte is obtained by dissolving the trivalent and tetravalent mixed vanadium compound in a sulfuric acid solution.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: September 2, 2003
    Assignees: Kansai Electric Power Co., Inc., Sumitomo Electric Industries, Ltd., Nippon Chemical Industrial Co., Ltd.
    Inventors: Yasuyuki Tanaka, Ken Horikawa, Muneo Mita, Nobuyuki Tokuda, Michiru Kubata
  • Publication number: 20020119090
    Abstract: A modified vanadium compound of the present invention in such that vanadium sulfate (III) or a mixed vanadium compound of vanadium sulfate (III) and vanadyl sulfate (IV) contains excessive sulfuric acid other than sulfate group composing the vanadium sulfate (III) or the vanadyl sulfate (IV), and when the modified vanadium compound is used, a redox flow battery electrolyte can be prepared easily.
    Type: Application
    Filed: December 4, 2001
    Publication date: August 29, 2002
    Applicant: Nippon Chemical Industrial Co.,Ltd.
    Inventors: Yasuyuki Tanaka, Muneo Mita, Ken Horikawa, Nobuyuki Tokuda, Masayuki Furuya, Michiru Kubata