Patents by Inventor Mihaela Dinu

Mihaela Dinu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210349017
    Abstract: This application is generally related to methods, apparatuses and systems for rapid, sensitive detection of biological agents. One aspect is directed to a system including an infrared optical source configured to output an optical beam at a pulse repetition rate greater than or equal to 1 MHz. The system also includes a medium configured to receive the optical beam in first and second locations of the medium, where each of the first and second locations is separated by a barrier, the first location includes a solvent, and the second location includes a biological agent in the solvent. The system also includes a detector configured to receive the outputted optical beam from the medium and detect infrared spectra therefrom.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 11, 2021
    Inventors: Mihaela DINU, Darren Duane HUDSON, Inuk KANG
  • Patent number: 10228511
    Abstract: A slot waveguide for electro-optic modulation is provided. The slot waveguide includes a slot and Bragg gratings defined by outer walls of the slot. The Bragg gratings are configured to slow an optical signal. The slot defines a low-refractive index region and the Bragg gratings spaced apart by the slot define a high-refractive index region. The slot waveguide includes a pair of electrodes extending parallel and adjacent to the slot waveguide. The electrodes are configured to carry an electrical modulation signal to induce a change in a phase of the optical signal. The slot of the slot waveguide is at least partially filled with an electro-optic polymeric material poled in a direction orthogonal to a direction of propagation of the optical signal in the slot waveguide.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: March 12, 2019
    Assignee: LGS Innovations LLC
    Inventors: Jane D. LeGrange, Mihaela Dinu, Alex Pidwerbetsky
  • Publication number: 20180088274
    Abstract: A slot waveguide for electro-optic modulation is provided. The slot waveguide includes a slot and Bragg gratings defined by outer walls of the slot. The Bragg gratings are configured to slow an optical signal. The slot defines a low-refractive index region and the Bragg gratings spaced apart by the slot define a high-refractive index region. The slot waveguide includes a pair of electrodes extending parallel and adjacent to the slot waveguide. The electrodes are configured to carry an electrical modulation signal to induce a change in a phase of the optical signal. The slot of the slot waveguide is at least partially filled with an electro-optic polymeric material poled in a direction orthogonal to a direction of propagation of the optical signal in the slot waveguide.
    Type: Application
    Filed: July 19, 2017
    Publication date: March 29, 2018
    Inventors: Jane D. LeGrange, Mihaela Dinu, Alex Pidwerbetsky
  • Patent number: 8982292
    Abstract: A spatial light modulator comprising an array-type liquid crystal panel, a polarization beam splitter, an oblique wave plate and a converging lens. The polarization beam splitter is orientated to direct a source light towards a reflective planar surface of the array-type liquid crystal panel. The oblique wave plate and converging lens are located between the polarization beam splitter and the array-type liquid crystal panel. The converging lens is configured to direct light from the reflective planar surface onto a facing surface of the polarization beam splitter.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 17, 2015
    Assignee: Alcatel Lucent
    Inventors: Gang Chen, Mihaela Dinu, Roland Ryf
  • Patent number: 8390749
    Abstract: A spatial light modulator 100 comprising an array-type liquid crystal panel 115, a polarization beam splitter 120, an oblique wave plate 130 and a converging lens 135. The polarization beam splitter is orientated to direct a source light 125 towards a reflective planar surface 127 of the array-type liquid crystal panel. The oblique wave plate and converging lens are located between the polarization beam splitter and the array-type liquid crystal panel. The converging lens is configured to direct light from the reflective planar surface onto a facing surface 125 of the polarization beam splitter.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: March 5, 2013
    Assignee: Alcatel Lucent
    Inventors: Gang Chen, Mihaela Dinu, Roland Ryf
  • Patent number: 7706536
    Abstract: A communication system adapted to use wavelength (frequency) division multiplexing for quantum-key distribution (QKD) and having a transmitter coupled to a receiver via a transmission link. In one embodiment, the receiver is adapted to (i) phase-shift a local oscillator (LO) signal generated at the receiver, (ii) combine the LO signal with a quantum-information (QI) signal received via the transmission link from the transmitter to produce interference signals, (iii) measure an intensity difference for these interference signals, and (iv) phase-lock the LO signal to the QI signal based on the measurement result. In one configuration, the QI signal has a plurality of pilot frequency components, each carrying a training signal, and a plurality of QKD frequency components, each carrying quantum key data. Advantageously, the system can maintain a phase lock for the QKD frequency components of the QI and LO signals, while the QKD frequency components of the QI signal continuously carry quantum key data.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: April 27, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Mihaela Dinu, Christophe J. Dorrer, Clinton Randy Giles, Inuk Kang, Dan Mark Marom
  • Publication number: 20090185086
    Abstract: A spatial light modulator 100 comprising an array-type liquid crystal panel 115, a polarization beam splitter 120, an oblique wave plate 130 and a converging lens 135. The polarization beam splitter is orientated to direct a source light 125 towards a reflective planar surface 127 of the array-type liquid crystal panel. The oblique wave plate and converging lens are located between the polarization beam splitter and the array-type liquid crystal panel. The converging lens is configured to direct light from the reflective planar surface onto a facing surface 125 of the polarization beam splitter.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 23, 2009
    Applicant: Alcatel-Lucent USA, Incorporated
    Inventors: Gang Chen, Mihaela Dinu, Roland Ryf
  • Patent number: 7460785
    Abstract: An optical performance monitor (OPM), e.g., for use in an optical network. The OPM may be configured to characterize one or more impairments in an optical signal modulated with data. The OPM has an optical autocorrelator configured to sample the autocorrelation function of the optical signal, e.g., using two-photon absorption. Autocorrelation points at various bit delays independently or in combination with average optical power may be used to detect and/or quantify one or more of the following: loss of data modulation, signal contrast, pulse broadening, peak power fluctuations, timing jitter, and deviations from the pseudo-random character of data. In addition, the OPM may be configured to perform Fourier transformation based on the autocorrelation points to obtain corresponding spectral components. The spectral components may be used to detect and/or quantify one or more of chromatic dispersion, polarization mode dispersion, and misalignment of a pulse carver and data modulator.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: December 2, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Mihaela Dinu, Hernando Garcia, Daniel Kilper, Wayne H. Knox, Howard R. Stuart, Chunhui Xu
  • Patent number: 7283744
    Abstract: An optical performance monitor (OPM) adapted to (i) sample an autocorrelation function corresponding to an optical signal transmitted in an optical network and (ii) based on the sampling, characterize two or more impairments concurrently present in the optical signal. In one embodiment, the OPM has an optical autocorrelator (OAC) coupled to a signal processor (SP). The OAC receives the optical signal from the network, generates two or more samples of its autocorrelation function, and applies said samples to the SP. The SP processes the samples and generates two or more signal metrics. Based on the signal metrics and reference data corresponding to the impairments, the SP then obtains a measure of each of the impairments.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: October 16, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Mihaela Dinu, Daniel C. Kilper, Howard R. Stuart
  • Publication number: 20060262930
    Abstract: A communication system adapted to use wavelength (frequency) division multiplexing for quantum-key distribution (QKD) and having a transmitter coupled to a receiver via a transmission link. In one embodiment, the receiver is adapted to (i) phase-shift a local oscillator (LO) signal generated at the receiver, (ii) combine the LO signal with a quantum-information (QI) signal received via the transmission link from the transmitter to produce interference signals, (iii) measure an intensity difference for these interference signals, and (iv) phase-lock the LO signal to the QI signal based on the measurement result. In one configuration, the QI signal has a plurality of pilot frequency components, each carrying a training signal, and a plurality of QKD frequency components, each carrying quantum key data. Advantageously, the system can maintain a phase lock for the QKD frequency components of the QI and LO signals, while the QKD frequency components of the QI signal continuously carry quantum key data.
    Type: Application
    Filed: August 24, 2005
    Publication date: November 23, 2006
    Inventors: Mihaela Dinu, Christophe Dorrer, Clinton Giles, Inuk Kang, Dan Marom
  • Publication number: 20060263096
    Abstract: A communication system adapted to use wavelength (frequency) division multiplexing for quantum-key distribution (QKD). In one embodiment, a communication system of the invention has a transmitter coupled to a receiver via a transmission link. The transmitter has (i) a first optical-frequency comb source (OFCS) adapted to generate a first plurality of uniformly spaced frequency components and (ii) a first multi-channel optical modulator adapted to independently modulate each component of the first plurality to produce a quantum-information (QI) signal applied to the transmission link. The receiver has (i) a second OFCS adapted to generate a second plurality of uniformly spaced frequency components and (ii) a second multi-channel optical modulator adapted to independently modulate each component of the second plurality to produce a local-oscillator (LO) signal.
    Type: Application
    Filed: August 24, 2005
    Publication date: November 23, 2006
    Inventors: Mihaela Dinu, Christophe Dorrer, Clinton Giles, Inuk Kang, Dan Marom
  • Patent number: 6970619
    Abstract: An optical device has at least one waveguide with at least one adjacent resonator, where the distance between the resonator and the waveguide can be controllably adjusted to change the optical coupling between the resonator and the waveguide. When implemented as part of an interferometer, the ability to adjust the waveguide/resonator distance—and thereby the optical coupling between them—provides a mechanically tunable interferometer.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: November 29, 2005
    Assignee: Lucent Technologies Inc.
    Inventors: Frieder H. Baumann, Mihaela Dinu, Howard R. Stuart, James A. Walker
  • Publication number: 20050244154
    Abstract: An optical performance monitor (OPM) adapted to (i) sample an autocorrelation function corresponding to an optical signal transmitted in an optical network and (ii) based on the sampling, characterize two or more impairments concurrently present in the optical signal. In one embodiment, the OPM has an optical autocorrelator (OAC) coupled to a signal processor (SP). The OAC receives the optical signal from the network, generates two or more samples of its autocorrelation function, and applies said samples to the SP. The SP processes the samples and generates two or more signal metrics. Based on the signal metrics and reference data corresponding to the impairments, the SP then obtains a measure of each of the impairments.
    Type: Application
    Filed: May 3, 2004
    Publication date: November 3, 2005
    Inventors: Mihaela Dinu, Daniel Kilper, Howard Stuart
  • Publication number: 20050074209
    Abstract: An optical device has at least one waveguide with at least one adjacent resonator, where the distance between the resonator and the waveguide can be controllably adjusted to change the optical coupling between the resonator and the waveguide. When implemented as part of an interferometer, the ability to adjust the waveguide/resonator distance—and thereby the optical coupling between them—provides a mechanically tunable interferometer.
    Type: Application
    Filed: March 31, 2003
    Publication date: April 7, 2005
    Inventors: Frieder Baumann, Mihaela Dinu, Howard Stuart, James Walker
  • Patent number: 6795617
    Abstract: An optical device including a microstructured fiber pumped by an external pulsed-light source. In one embodiment, the microstructured fiber includes two waist regions functioning as a tunable attenuator and a wavelength shifter, respectively. Output wavelength of the optical device is selected by attenuating the pump light in the first waist region and then passing the light through the second waist region to shift the pump energy to a new spectral band. An optical device of the invention configured with two or more microstructured fibers generates two or more synchronized pulsed beams, each at a different characteristic wavelength. Certain embodiments of the invention provide an inexpensive, compact, energy-efficient multi-wavelength synchronized pulsed-light source.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: September 21, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Mihaela Dinu, Charles Kerbage, Xiang Liu, Francesco Quochi, Robert S. Windeler, Chunhui Xu
  • Patent number: 6751377
    Abstract: In accordance with the invention, a tunable, reconfigurable optical add-drop filter comprises a pair of optical waveguides optically coupled by a microring or microdisk resonator wherein the coupling distance between the resonator and at least one of the waveguides is micromechanically controllable. With this arrangement, the degree of coupling can be tuned after fabrication to provide high level extinction of dropped wavelengths and the filter can be dynamically reconfigured. Advantageously, laser radiation is provided to tune the resonant wavelength.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: June 15, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Frieder Heinrich Baumann, Mihaela Dinu, Howard Roy Stuart, James Albert Walker
  • Publication number: 20030219206
    Abstract: An optical device including a microstructured fiber pumped by an external pulsed-light source. In one embodiment, the microstructured fiber includes two waist regions functioning as a tunable attenuator and a wavelength shifter, respectively. Output wavelength of the optical device is selected by attenuating the pump light in the first waist region and then passing the light through the second waist region to shift the pump energy to a new spectral band. An optical device of the invention configured with two or more microstructured fibers generates two or more synchronized pulsed beams, each at a different characteristic wavelength. Certain embodiments of the invention provide an inexpensive, compact, energy-efficient multi-wavelength synchronized pulsed-light source.
    Type: Application
    Filed: April 30, 2003
    Publication date: November 27, 2003
    Inventors: Mihaela Dinu, Charles Kerbage, Xiang Liu, Francesco Quochi, Robert S. Windeler, Chunhui Xu
  • Publication number: 20020176129
    Abstract: An optical performance monitor (OPM), e.g., for use in an optical network. The OPM may be configured to characterize one or more impairments in an optical signal modulated with data. The OPM has an optical autocorrelator configured to sample the autocorrelation function of the optical signal, e.g., using two-photon absorption. Autocorrelation points at various bit delays independently or in combination with average optical power may be used to detect and/or quantify one or more of the following: loss of data modulation, signal contrast, pulse broadening, peak power fluctuations, timing jitter, and deviations from the pseudo-random character of data. In addition, the OPM may be configured to perform Fourier transformation based on the autocorrelation points to obtain corresponding spectral components. The spectral components may be used to detect and/or quantify one or more of chromatic dispersion, polarization mode dispersion, and misalignment of a pulse carver and data modulator.
    Type: Application
    Filed: March 28, 2002
    Publication date: November 28, 2002
    Inventors: Mihaela Dinu, Hernando Garcia, Daniel Kilper, Wayne H. Knox, Howard R. Stuart, Chunhui Xu
  • Publication number: 20020172466
    Abstract: In accordance with the invention, a tunable, reconfigurable optical add-drop filter comprises a pair of optical waveguides optically coupled by a microring or microdisk resonator wherein the coupling distance between the resonator and at least one of the waveguides is micromechanically controllable. With this arrangement, the degree of coupling can be tuned after fabrication to provide high level extinction of dropped wavelengths and the filter can be dynamically reconfigured. Advantageously, laser radiation is provided to tune the resonant wavelength.
    Type: Application
    Filed: May 21, 2001
    Publication date: November 21, 2002
    Inventors: Frieder Heinrich Baumann, Mihaela Dinu, Howard Roy Stuart, James Albert Walker