Patents by Inventor Mihail Milkov

Mihail Milkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230061926
    Abstract: A lidar sensor includes an optical transmitter configured to generate a pulse of light. The lidar sensor also includes an optical receiver configured to receive the pulse of light generated by the optical transmitter and reflected off an object in a field of view. The optical receiver includes a photodetector configured to generate a photocurrent pulse corresponding to the received pulse of light. A receiver circuit is electrically connected to the photodetector. The receiver circuit includes a current mirror providing multiplication of the photocurrent pulse provided by the photodetector. The receiver circuit is also configured to convert the photocurrent pulse to a voltage pulse and provide the voltage pulse as an output.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: Continental Automotive Systems, Inc.
    Inventor: Mihail Milkov
  • Patent number: 11536847
    Abstract: A receiver circuit for a sensor includes a photosensitive input circuit and a logarithmic-signal circuit including a PN junction coupled to a pulse voltage node. The pulse voltage node may be coupled to the P-type terminal of the PN junction and an output of the photosensitive input circuit. In some examples, the receiver circuit also may include a linear-signal circuit and/or a square-root-signal circuit.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: December 27, 2022
    Assignee: Continental Autonomous Mobility US, LLC
    Inventors: Mihail Milkov, Kyle LaFevre, Osman Musa, Patrick B Gilliland, Roger Frederick DuPont
  • Publication number: 20210132229
    Abstract: A receiver circuit for a sensor includes a photosensitive input circuit and a logarithmic-signal circuit including a PN junction coupled to a pulse voltage node. The pulse voltage node may be coupled to the P-type terminal of the PN junction and an output of the photosensitive input circuit. In some examples, the receiver circuit also may include a linear-signal circuit and/or a square-root-signal circuit.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Applicant: Continental Automotive Systems, Inc.
    Inventors: Mihail Milkov, Kyle LaFevre, Osman Musa, Patrick B. Gilliland, Roger Frederick DuPont
  • Patent number: 10574913
    Abstract: A HDR CTIA pixel which provides automatic gain selection, and spatial and temporal coherence. The pixel comprises an input node for connection to a photocurrent, and an output node. The pixel includes a CTIA which comprises a “high gain” integration capacitor and a first reset switch connected between the input and output nodes, a “low gain” integration capacitor connected between the input node and a first node, a second reset switch connected between the first node and the output node, and a first FET connected across the second reset switch. In operation, the first FET is off during the reset phase, and is conditionally turned on during or after the integration phase. The CTIA also includes an amplifier having an inverting input connected to the input node and an output connected to the output node. The pixel can be operated in “static low-gain control” and “dynamic low-gain control” modes.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: February 25, 2020
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Vincent Douence, Mihail Milkov
  • Patent number: 10560646
    Abstract: A pixel comprising a pinned photodiode (PPD) which generates a photocurrent Iph, a transfer gate connected in series between the PPD and a first node, a low-gain select transistor connected between the first node and a second node, a reset transistor connected between the second node and a reset voltage, a capacitance connected between the second node and a first constant potential, and a source-follower transistor whose source, gate and drain are connected to an output node, the first node and a second constant potential, respectively. When properly arranged, a vertically integrated (3D) global-shutter pinned PPD pixel is provided, which uses an overflow integration capacitor and subthreshold conduction of the reset transistor for increased dynamic range. Global shutter operation is achieved by storing the pixel output on sampling capacitors in another semiconductor layer at the end of integration.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: February 11, 2020
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Mihail Milkov, Vincent Douence
  • Publication number: 20190327432
    Abstract: A pixel comprising a pinned photodiode (PPD) which generates a photocurrent Iph, a transfer gate connected in series between the PPD and a first node, a low-gain select transistor connected between the first node and a second node, a reset transistor connected between the second node and a reset voltage, a capacitance connected between the second node and a first constant potential, and a source-follower transistor whose source, gate and drain are connected to an output node, the first node and a second constant potential, respectively. When properly arranged, a vertically integrated (3D) global-shutter pinned PPD pixel is provided, which uses an overflow integration capacitor and subthreshold conduction of the reset transistor for increased dynamic range. Global shutter operation is achieved by storing the pixel output on sampling capacitors in another semiconductor layer at the end of integration.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 24, 2019
    Inventors: Mihail Milkov, Vincent Douence
  • Publication number: 20190075262
    Abstract: A HDR CTIA pixel which provides automatic gain selection, and spatial and temporal coherence. The pixel comprises an input node for connection to a photocurrent, and an output node. The pixel includes a CTIA which comprises a “high gain” integration capacitor and a first reset switch connected between the input and output nodes, a “low gain” integration capacitor connected between the input node and a first node, a second reset switch connected between the first node and the output node, and a first FET connected across the second reset switch. In operation, the first FET is off during the reset phase, and is conditionally turned on during or after the integration phase. The CTIA also includes an amplifier having an inverting input connected to the input node and an output connected to the output node. The pixel can be operated in “static low-gain control” and “dynamic low-gain control” modes.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 7, 2019
    Inventors: Vincent Douence, Mihail Milkov
  • Patent number: 10205463
    Abstract: A column-parallel dual-gain single-slope ADC comprises an input for receiving a signal Vin, a sample-and-hold stage which receives Vin and outputs sampled signal Vin,samp, a comparator, a counter, and a ramp generator which generates high-gain (HG) and low-gain (LG) ramps, with the ratio of the LG ramp slope to the HG ramp slope being greater than 1. During a coarse conversion phase, Vin,samp is compared with a threshold voltage Vthresh, and a flag is set to a first or second state depending on the comparison. During a fine conversion phase, if the flag is in the first state, the HG ramp is provided to the comparator and its output toggles when the ramp voltage becomes equal to Vin,samp. If the flag is in the second state, the LG ramp is provided to the comparator and its output toggles when the LG ramp voltage becomes equal to Vin,samp.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: February 12, 2019
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Mihail Milkov, Kyle LaFevre
  • Patent number: 9716510
    Abstract: Comparator circuits suitable for use in a column-parallel single-slope ADC comprise a comparator, an input voltage sampling switch connected between an input voltage Vin and a first node, and a sampling capacitor connected between the first and second nodes and which stores a voltage which varies with Vin when the sampling switch is closed. A first reset switch is connected between the second node and a reset voltage, an isolation buffer is coupled between the second node and a comparator input, and a voltage ramp switch applies a voltage ramp Vramp to the first node when closed. The comparator output toggles when Vramp exceeds Vin, with the isolation buffer maintaining a nearly constant capacitive load on Vramp. A ‘ramp disconnect’ feature can be used to increase the circuit's input range, and a dummy capacitor can be employed to maintain a constant capacitance on Vramp.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: July 25, 2017
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventor: Mihail Milkov
  • Patent number: 9667234
    Abstract: This invention pertains to a source follower circuit suitable for receiving and buffering an input voltage and providing the buffered input voltage to a sampling capacitor via a sampling switch. The source follower circuit employs a slew enhancement circuit which enables the source follower to have fast settling for both high-to-low and low-to-high transitions.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: May 30, 2017
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Mihail Milkov, Jason Inman
  • Publication number: 20160336949
    Abstract: Comparator circuits suitable for use in a column-parallel single-slope ADC comprise a comparator, an input voltage sampling switch connected between an input voltage Vin and a first node, and a sampling capacitor connected between the first and second nodes and which stores a voltage which varies with Vin when the sampling switch is closed. A first reset switch is connected between the second node and a reset voltage, an isolation buffer is coupled between the second node and a comparator input, and a voltage ramp switch applies a voltage ramp Vramp to the first node when closed. The comparator output toggles when Vramp exceeds Vin, with the isolation buffer maintaining a nearly constant capacitive load on Vramp. A ‘ramp disconnect’ feature can be used to increase the circuit's input range, and a dummy capacitor can be employed to maintain a constant capacitance on Vramp.
    Type: Application
    Filed: May 12, 2015
    Publication date: November 17, 2016
    Inventor: MIHAIL MILKOV
  • Patent number: 9357151
    Abstract: A shared counter circuit for a column-parallel single-slope ADC includes an n-bit counter; n low-voltage (LV) drivers connected to receive respective counter output bits and to provide a logic high or logic low output signal which tracks the received bit, the voltage difference between the logic high and logic low output signals being less than Vdd; and a plurality of sets of regenerative latches powered by a supply voltage Vdd, each of which receives an output from a respective LV driver and latches and regenerates the received output as a rail-to-rail CMOS signal upon the occurrence of a trigger event. One typical trigger event occurs when a periodic ramp voltage exceeds an input voltage provided to the ADC which may originate, for example, from the columns of a photodetector array.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: May 31, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventor: Mihail Milkov
  • Patent number: 7795977
    Abstract: A bootstrapped class AB CMOS output circuit and method for generating a class AB output are disclosed. The bootstrapped class AB CMOS output circuit has a voltage offset circuit coupled to an NMOS transistor and a PMOS transistor. The voltage offset circuit has a capacitor bootstrapped between the NMOS transistor and the PMOS transistor to establish a voltage offset between the NMOS transistor and the PMOS transistor to effect a class AB output. The method for generating a class AB output in a semiconductor device having a capacitor coupled to the NMOS transistor and the PMOS transistor includes providing a voltage offset across the capacitor to effect a class AB output.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: September 14, 2010
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventor: Mihail Milkov
  • Publication number: 20100001800
    Abstract: A bootstrapped class AB CMOS output circuit and method for generating a class AB output are disclosed. The bootstrapped class AB CMOS output circuit has a voltage offset circuit coupled to an NMOS transistor and a PMOS transistor. The voltage offset circuit has a capacitor bootstrapped between the NMOS transistor and the PMOS transistor to establish a voltage offset between the NMOS transistor and the PMOS transistor to effect a class AB output. The method for generating a class AB output in a semiconductor device having a capacitor coupled to the NMOS transistor and the PMOS transistor includes providing a voltage offset across the capacitor to effect a class AB output.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 7, 2010
    Inventor: Mihail Milkov
  • Publication number: 20060192888
    Abstract: A system and method for averaging incident light on plural pixels using a CMOS sensor is provided. The process includes resetting all pixels in a given region during a reset phase; and reading a voltage of a floating reset node as a function of time during a measurement phase. During the reset phase, an access select signal and a reset voltage are both high. The measurement phase begins when the access select signal is low and the reset voltage is still high. The system and method may be used to perform automatic exposure control and automatic white balancing operations.
    Type: Application
    Filed: May 10, 2006
    Publication date: August 31, 2006
    Inventors: Mihail Milkov, David Standley, Amit Mittra