Patents by Inventor Miho OKADA

Miho OKADA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180262130
    Abstract: A tabular structure having flexibility extends from a root end portion to a distal end portion along a reference axis. The root end portion is fixed to a pedestal. Three sectioned parts are provided in the tabular structure. Weights are joined to the lower surfaces of the respective three sectioned parts. The three sectioned parts respectively have different thicknesses. As a result, spring constants are different. When vibration energy from the outside is applied to the pedestal, the weights vibrate and a bend occurs in the tabular structure. If a charge generating element such as a piezoelectric element is stuck to the tabular structure, an electric charge is generated by bending stress. A frequency band capable of generating electric power is expanded by providing a plurality of weights in the tabular structure in which the spring constants are different in each of the sectioned parts.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 13, 2018
    Applicant: Tri-Force Management Corporation
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Publication number: 20180252602
    Abstract: A torque sensor of the present invention includes: a ring-shaped deformation body; first to fourth displacement electrodes deformable due to elastic deformation of the ring-shaped deformation body; first to fourth fixed electrodes arranged at positions opposite to those of the first to fourth displacement electrodes; and a detection circuit that outputs an electrical signal representing torque based on a variation amount of capacitance values of first to fourth capacitive elements formed by the first to fourth displacement electrodes and the first to fourth fixed electrodes, wherein the detection circuit outputs, as the electrical signals representing the acting torque, a first electrical signal corresponding to a difference between “a sum of a capacitance value of the first capacitive element and a capacitance value of the second capacitive element” and “a sum of a capacitance value of the third capacitive element and a capacitance value of the fourth capacitive element” and a second electrical signal corres
    Type: Application
    Filed: May 31, 2016
    Publication date: September 6, 2018
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA, Nobuhisa NISHIOKI
  • Publication number: 20180017452
    Abstract: The present invention provides a torque sensor that is small and highly rigid and for which high production efficiency is possible. An annular deformation body (50) is disposed between a left side support body (10) and a right side support body (20). Protruding parts (11, 12) of the left side support body (10) are joined to two upper and lower sites on the left side surface of the annular deformation body (50), and protruding parts (21, 22) of the right side support body (20) are joined to two left and right sites on the right side surface of the annular deformation body (50). The annular deformation body (50) has, at four sites, detection parts (D1 to D4) that cause elastic deformation, the right side surface of each of the detection parts (D1 to D4) moves close to or moves away from the opposing surface of the right side support body (20) when torque around the Z axis is exerted on the left side support body (10) in a state that a load is applied to the right side support body (20).
    Type: Application
    Filed: January 26, 2015
    Publication date: January 18, 2018
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Publication number: 20170191882
    Abstract: There is provided a detection ring (600), the structure of which is shown in the perspective view of FIG. 13(a). The detection ring (600) is arranged so that the Z-axis is a central axis on the XY plane as shown in the side view (b), and a planar shape thereof is formed in a circular ring as shown in the bottom view (c). The detection ring (600) is structured so that four sets of detection portions (D1 to D4), each constituted with a blade spring which undergoes elastic deformation, are coupled with four sets of circular arc-shaped coupling portions (L1 to L4). A supporting substrate is arranged below the detection ring (600) and fixing points (P1, P2) arranged on the Y-axis are fixed to the supporting substrate. When force or moment to be detected is exerted on exertion points (Q1, Q2), the four sets of detection portions (D1 to D4) undergo elastic deformation.
    Type: Application
    Filed: January 26, 2015
    Publication date: July 6, 2017
    Applicant: WACOH-TECH INC.
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Publication number: 20170110989
    Abstract: There is provided a power generating element which is capable of converting vibration energy in various directions into electric energy without waste and less likely to be damaged even upon application of excessive vibration. Made available is a main generating structure (MGS) in which a first layer (100), a second layer (200) and a third layer (300) are laminated. The second layer (200) has a plate-like bridge portion (210), a central plate-like portion (220), a left-hand side plate-like portion (230) and a right-hand side plate-like portion (240), each of which is flexible, and the third layer (300), that is a weight body, formed in the “U” letter shape is joined with the lower surface thereof. The plate-like bridge portion (210) is protected by the weight body (300) circumference thereof.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 20, 2017
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Miho OKADA
  • Publication number: 20160211778
    Abstract: The power generation efficiency is to be enhanced by converting vibration energy including various direction components into electric energy without waste. A cantilever structure is adopted, in which a first plate-like bridge portion (120) and a second plate-like bridge portion (130) extend in a shape of a letter U from a fixing-portion (110) fixed to the device housing (200) and a weight body (150) is connected to the end. On the upper surface of the cantilever structure, a common lower layer electrode (E00), a layered piezoelectric element (300) and discrete upper layer electrodes (Ex1 to Ez4) are formed. The upper layer electrodes (Ez1 to Ez4) disposed on a center line (Lx, Ly) of each plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the Z-axis direction vibration of the weight body (150).
    Type: Application
    Filed: May 15, 2014
    Publication date: July 21, 2016
    Applicant: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro OKADA, Satoshi ERA, Miho OKADA
  • Patent number: 9383277
    Abstract: A cylindrical annular detector is disposed at the periphery of the columnar body fixed at a central part of the upper surface of a supporting substrate. A space between the columnar body and the annular detector is connected by a thin flexible connection member (diaphragm). A washer-shaped insulation substrate is disposed on the upper surface of the supporting substrate, individual fixed electrodes are formed on the upper surface thereof, and they constitute capacitive elements together with a displacement electrode which is composed of the lower surface of the annular detector. Upon exertion of an external force on the annular detector, the flexible connection member deflects to cause displacement, which is detected as change in capacitance value of the capacitive element.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: July 5, 2016
    Assignee: WACOH CORPORATION
    Inventors: Kazuhiro Okada, Satoshi Era, Miho Okada
  • Publication number: 20160041049
    Abstract: A cylindrical annular detector is disposed at the periphery of the columnar body fixed at a central part of the upper surface of a supporting substrate. A space between the columnar body and the annular detector is connected by a thin flexible connection member (diaphrapm). A washer-shaped insulation substrate is disposed on the upper surface of the supporting substrate, individual fixed electrodes are formed on the upper surface thereof, and they constitute capacitive elements together with a displacement electrode which is composed of the lower surface of the annular detector. Upon exertion of an external force on the annular detector, the flexible connection member deflects to cause displacement, which is detected as change in capacitance value of the capacitive element.
    Type: Application
    Filed: July 17, 2013
    Publication date: February 11, 2016
    Applicant: WACOH CORPORATION
    Inventors: Kazuhiro OKADA, Satoshi ERA, Miho OKADA