Patents by Inventor Miikka M. Kangas

Miikka M. Kangas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230403935
    Abstract: Various embodiments disclosed herein describe thermoelectric cooling modules. The thermoelectric cooling modules may include a first substrate positioned over a second substrate in a vertical stacking direction, and may include a thermoelectric connector that thermally connects the first and second substrates. The thermoelectric connector may be configured to transfer heat laterally relative to the vertical stacking direction to provide more efficient heat transfer between the first substrate and the second substrate.
    Type: Application
    Filed: December 19, 2022
    Publication date: December 14, 2023
    Inventor: Miikka M. Kangas
  • Patent number: 11740126
    Abstract: Methods and systems for measuring one or more properties of a sample are disclosed. The methods and systems can include multiplexing measurements of signals associated with a plurality of wavelengths without adding any signal independent noise and without increasing the total measurement time. One or more levels of encoding, where, in some examples, a level of encoding can be nested within one or more other levels of encoding. Multiplexing can include wavelength, position, and detector state multiplexing. In some examples, SNR can be enhanced by grouping together one or more signals based on one or more properties including, but not limited to, signal intensity, drift properties, optical power detected, wavelength, location within one or more components, material properties of the light sources, and electrical power. In some examples, the system can be configured for optimizing the conditions of each group individually based on the properties of a given group.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: August 29, 2023
    Inventors: Trent D. Ridder, Mark Alan Arbore, Gary Shambat, Robert Chen, David I. Simon, Miikka M. Kangas
  • Patent number: 11703698
    Abstract: Eyeglasses may include one or more lenses and control circuitry that adjusts an optical power of the lenses. The control circuitry may be configured to determine a user's prescription and accommodation range during a vision characterization process. The vision characterization process may include adjusting the optical power of the lens until the user indicates that an object viewed through the lens is in focus. A distance sensor may measure the distance to the in-focus object. The control circuitry may calculate the user's prescription based on the optical power of the lens and the distance to the in-focus object. The control circuitry may adjust the optical power automatically or in response to user input. The object viewed through the lens may be an electronic device. The user may control the optical power of the lens and/or indicate when objects are in focus by providing input to the electronic device.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: July 18, 2023
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Eric G. Smith, Qing Liu, Jeffrey G. Koller
  • Publication number: 20230204497
    Abstract: This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
    Type: Application
    Filed: February 20, 2023
    Publication date: June 29, 2023
    Inventors: Miikka M. Kangas, Mark Alan Arbore, David I. Simon, Michael J. Bishop, James W. Hillendahl, Robert Chen
  • Patent number: 11585749
    Abstract: This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: February 21, 2023
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Mark Alan Arbore, David I. Simon, Michael J. Bishop, James W. Hillendahl, Robert Chen
  • Patent number: 11552454
    Abstract: Integrated laser sources emitting multi-wavelengths of light with reduced thermal transients and crosstalk and methods for operating thereof are disclosed. The integrated laser sources can include one or more heaters and a temperature control system to maintain a total thermal load of the gain segment, the heater(s), or both of a given laser to be within a range based on a predetermined target value. The system can include electrical circuitry configured to distribute current to the gain segment, the heater(s), or both. The heater(s) can be located proximate to the gain segment, and the distribution of current can be based on the relative locations. In some examples, the central laser can be heated prior to being activated. In some examples, one or more of the plurality of lasers can operate in a subthreshold operation mode when the laser is not lasing to minimize thermal perturbations to proximate lasers.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: January 10, 2023
    Assignee: Apple Inc.
    Inventors: Mark Alan Arbore, Gary Shambat, Miikka M. Kangas, Ross M. Audet, Jeffrey G. Koller
  • Publication number: 20220037543
    Abstract: An electromagnetic radiation detector includes an InP substrate having a first surface opposite a second surface; a first InGaAs electromagnetic radiation absorber stacked on the first surface and configured to absorb a first set of electromagnetic radiation wavelengths; a set of one or more buffer layers stacked on the first InGaAs electromagnetic radiation absorber and configured to absorb at least some of the first set of electromagnetic radiation wavelengths; a second InGaAs electromagnetic radiation absorber stacked on the set of one or more buffer layers and configured to absorb a second set of electromagnetic radiation wavelengths; and an immersion condenser lens formed on the second surface and configured to direct electromagnetic radiation through the InP substrate and toward the first InGaAs electromagnetic radiation absorber and the second InGaAs electromagnetic radiation absorber.
    Type: Application
    Filed: July 26, 2021
    Publication date: February 3, 2022
    Inventors: Mark Alan Arbore, Matthew T. Morea, Miikka M. Kangas, Romain F. Chevallier, Tomas Sarmiento
  • Publication number: 20220026742
    Abstract: A pair of eyeglasses may include one or more adjustable lenses that are each configured to align with a respective one of a user's eyes. The adjustable lenses may each include electrically modulated optical material such as one or more liquid crystal cells. The liquid crystal cells may include arrays of electrodes that extend along one, two, three, four, or more than four directions. Control circuitry may apply control signals to the array of electrodes in each liquid crystal cell to produce a desired phase profile. Each lens may be foveated such that portions of the lens within the user's gaze exhibit a different phase profile than portions of the lens outside of the user's gaze. The control circuitry may adjust the location of the optically distinct area so that it remains aligned with the user's gaze.
    Type: Application
    Filed: August 2, 2021
    Publication date: January 27, 2022
    Inventors: Patrick R. Gill, Miikka M. Kangas, Jeffrey G. Koller, Alexander A. Miles, Yu Horie
  • Patent number: 11221488
    Abstract: A pair of eyeglasses may include one or more adjustable lenses that are each configured to align with a respective one of a user's eyes. The adjustable lenses may include a foveated liquid crystal adjustable lens stacked with a non-liquid-crystal adjustable lens such as a fluid-filled lens or an Alvarez lens. The foveated adjustable lens may include electrically modulated optical material such as one or more liquid crystal cells. The liquid crystal cells may include arrays of electrodes that extend along one, two, three, four, or more than four directions. Control circuitry may apply control signals to the array of electrodes in each liquid crystal cell to produce a desired phase profile. Each lens may be foveated such that portions of the lens within the user's gaze exhibit a different phase profile than portions of the lens outside of the user's gaze.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 11, 2022
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Yu Horie, Ehsan Arbabi, Patrick R. Gill, Jeffrey G. Koller
  • Publication number: 20210310867
    Abstract: Methods and systems for measuring one or more properties of a sample are disclosed. The methods and systems can include multiplexing measurements of signals associated with a plurality of wavelengths without adding any signal independent noise and without increasing the total measurement time. One or more levels of encoding, where, in some examples, a level of encoding can be nested within one or more other levels of encoding. Multiplexing can include wavelength, position, and detector state multiplexing. In some examples, SNR can be enhanced by grouping together one or more signals based on one or more properties including, but not limited to, signal intensity, drift properties, optical power detected, wavelength, location within one or more components, material properties of the light sources, and electrical power. In some examples, the system can be configured for optimizing the conditions of each group individually based on the properties of a given group.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Inventors: Trent D. Ridder, Mark Alan Arbore, Gary Shambat, Robert Chen, David I. Simon, Miikka M. Kangas
  • Patent number: 11086143
    Abstract: A pair of eyeglasses may include one or more adjustable lenses that are each configured to align with a respective one of a user's eyes. The adjustable lenses may each include electrically modulated optical material such as one or more liquid crystal cells. The liquid crystal cells may include arrays of electrodes that extend along one, two, three, four, or more than four directions. Control circuitry may apply control signals to the array of electrodes in each liquid crystal cell to produce a desired phase profile. Each lens may be foveated such that portions of the lens within the user's gaze exhibit a different phase profile than portions of the lens outside of the user's gaze. The control circuitry may adjust the location of the optically distinct area so that it remains aligned with the user's gaze.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: August 10, 2021
    Assignee: Apple Inc.
    Inventors: Patrick R. Gill, Miikka M. Kangas, Jeffrey G. Koller, Alexander A. Miles, Yu Horie
  • Patent number: 11041758
    Abstract: Methods and systems for measuring one or more properties of a sample are disclosed. The methods and systems can include multiplexing measurements of signals associated with a plurality of wavelengths without adding any signal independent noise and without increasing the total measurement time. One or more levels of encoding, where, in some examples, a level of encoding can be nested within one or more other levels of encoding. Multiplexing can include wavelength, position, and detector state multiplexing. In some examples, SNR can be enhanced by grouping together one or more signals based on one or more properties including, but not limited to, signal intensity, drift properties, optical power detected, wavelength, location within one or more components, material properties of the light sources, and electrical power. In some examples, the system can be configured for optimizing the conditions of each group individually based on the properties of a given group.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: June 22, 2021
    Assignee: Apple Inc.
    Inventors: Trent D. Ridder, Mark Alan Arbore, Gary Shambat, Robert Chen, David I. Simon, Miikka M. Kangas
  • Publication number: 20210018432
    Abstract: This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Inventors: Miikka M. Kangas, Mark Alan Arbore, David I. Simon, Michael J. Bishop, James W. Hillendahl, Robert Chen
  • Patent number: 10801950
    Abstract: This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: October 13, 2020
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Mark Alan Arbore, David I. Simon, Michael J. Bishop, James W. Hillendahl, Robert Chen
  • Patent number: 10697830
    Abstract: A comb light source and spectrometer is disclosed. The comb light source and spectrometer can include a plurality of light emitters, where each light emitter can be configured to emit light included in a plurality of wavelength bands. Each wavelength band can be separated from an adjacent wavelength band by a noise band. Due to the separated wavelength bands for a light emitter, any signal received outside of the one or more wavelength bands can originate from noise (e.g., drift, ambient light, electrical noise), thereby enhancing signal analysis and noise rejection. In some examples, the comb light emitters can be activated sequentially such that a plurality of wavelengths across a spectrum can be measured. In some examples, the resolution and the number of spectral lines in the comb light source can be tuned by changing the properties of the quantum dots and/or increasing the number of comb light emitters.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Jeffrey G. Koller, William C. Athas
  • Patent number: 10690591
    Abstract: Methods and systems for measurement time distribution for referencing schemes are disclosed. The disclosed methods and systems can be capable of dynamically changing the measurement time distribution based on the sample signal, reference signal, noise levels, and SNR. The methods and systems can be configured with a plurality of measurement states, including a sample measurement state, reference measurement state, and dark measurement state. In some examples, the measurement time distribution scheme can be based on the operating wavelength, the measurement location at the sampling interface, and/or targeted SNR. Examples of the disclosure further include systems and methods for measuring the different measurement states concurrently. Moreover, the systems and methods can include a high-frequency detector to eliminate or reduce decorrelated noise fluctuations that can lower the SNR.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: June 23, 2020
    Assignee: Apple Inc.
    Inventors: Robert Chen, Trent D. Ridder, Miikka M. Kangas, David I. Simon, Matthew A. Terrel
  • Patent number: 10670466
    Abstract: This relates to sensor systems, detectors, imagers, and readout integrated circuits (ROICs) configured to selectively detect one or more frequencies or polarizations of light, capable of operating with a wide dynamic range, or any combination thereof. In some examples, the detector can include one or more light absorbers; the patterns and/or properties of a light absorber can be configured based on the desired measurement wavelength range and/or polarization direction. In some examples, the detector can comprise a plurality of at least partially overlapping light absorbers for enhanced dynamic range detection. In some examples, the detector can be capable of electrostatic tuning for one or more flux levels by varying the response time or sensitivity to account for various flux levels. In some examples, the ROIC can be capable of dynamically adjusting at least one of the frame rate integrating capacitance, and power of the illumination source.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 2, 2020
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Michael J. Bishop, Robert Chen, David I. Simon, Harold L. Sontag, III, George Dee Skidmore
  • Publication number: 20190250041
    Abstract: This relates to sensor systems, detectors, imagers, and readout integrated circuits (ROICs) configured to selectively detect one or more frequencies or polarizations of light, capable of operating with a wide dynamic range, or any combination thereof. In some examples, the detector can include one or more light absorbers; the patterns and/or properties of a light absorber can be configured based on the desired measurement wavelength range and/or polarization direction. In some examples, the detector can comprise a plurality of at least partially overlapping light absorbers for enhanced dynamic range detection. In some examples, the detector can be capable of electrostatic tuning for one or more flux levels by varying the response time or sensitivity to account for various flux levels. In some examples, the ROIC can be capable of dynamically adjusting at least one of the frame rate integrating capacitance, and power of the illumination source.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Miikka M. KANGAS, Michael J. BISHOP, Robert CHEN, David I. SIMON, Harold L. SONTAG, III, George Dee SKIDMORE
  • Patent number: 10323987
    Abstract: This relates to sensor systems, detectors, imagers, and readout integrated circuits (ROICs) configured to selectively detect one or more frequencies or polarizations of light, capable of operating with a wide dynamic range, or any combination thereof. In some examples, the detector can include one or more light absorbers; the patterns and/or properties of a light absorber can be configured based on the desired measurement wavelength range and/or polarization direction. In some examples, the detector can comprise a plurality of at least partially overlapping light absorbers for enhanced dynamic range detection. In some examples, the detector can be capable of electrostatic tuning for one or more flux levels by varying the response time or sensitivity to account for various flux levels. In some examples, the ROIC can be capable of dynamically adjusting at least one of the frame rate integrating capacitance, and power of the illumination source.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: June 18, 2019
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Michael J. Bishop, Robert Chen, David I. Simon, Harold L. Sontag, III, George Dee Skidmore
  • Publication number: 20190137337
    Abstract: Methods and systems for measuring one or more properties of a sample are disclosed. The methods and systems can include multiplexing measurements of signals associated with a plurality of wavelengths without adding any signal independent noise and without increasing the total measurement time. One or more levels of encoding, where, in some examples, a level of encoding can be nested within one or more other levels of encoding. Multiplexing can include wavelength, position, and detector state multiplexing. In some examples, SNR can be enhanced by grouping together one or more signals based on one or more properties including, but not limited to, signal intensity, drift properties, optical power detected, wavelength, location within one or more components, material properties of the light sources, and electrical power. In some examples, the system can be configured for optimizing the conditions of each group individually based on the properties of a given group.
    Type: Application
    Filed: April 13, 2017
    Publication date: May 9, 2019
    Inventors: Trent D. RIDDER, Mark Alan ARBORE, Gary SHAMBAT, Robert CHEN, David I. SIMON, Miikka M. KANGAS