Patents by Inventor Mike C. Liu

Mike C. Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974844
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: May 7, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20230360799
    Abstract: A method for retrospective calibration of a glucose sensor uses stored values of measured working electrode current (Isig) to calculate a final sensor glucose (SG) value retrospectively. The Isig values may be preprocessed, discrete wavelet decomposition applied. At least one machine learning model, such as, e.g., Genetic Programing (GP) and Regression Decision Tree (DT), may be used to calculate SG values based on the Isig values and the discrete wavelet decomposition. Other inputs may include, e.g., counter electrode voltage (Vcntr) and Electrochemical Impedance Spectroscopy (EIS) data. A plurality of machine learning models may be used to generate respective SG values, which are then fused to generate a fused SG. Fused SG values may be filtered to smooth the data, and blanked if necessary.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 9, 2023
    Inventors: Keith Nogueira, Taly G. Engel, Benyamin Grosman, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai, Andrea Varsavsky, Jeffrey Nishida
  • Patent number: 11766195
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: September 26, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Publication number: 20230017510
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: August 22, 2022
    Publication date: January 19, 2023
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20220354394
    Abstract: The disclosed techniques include obtaining a first signal generated by an electrochemical glucose sensor and a second signal generated by an optical glucose sensor, and obtaining a glucose value indicative of a user's blood glucose level, where the glucose value and the second signal are obtained at different times. The disclosed techniques further cause calculating a mapped value for the second signal based on the first signal, and calibrating the mapped value of the second signal based on the glucose value.
    Type: Application
    Filed: July 7, 2022
    Publication date: November 10, 2022
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Patent number: 11445952
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: September 20, 2022
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai
  • Patent number: 11406295
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: August 9, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Patent number: 11382538
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: July 12, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Publication number: 20210386335
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Application
    Filed: August 27, 2021
    Publication date: December 16, 2021
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Patent number: 11103164
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: August 31, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Publication number: 20210161439
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Inventors: ANDREA VARSAVSKY, XIAOLONG LI, MIKE C. LIU, YUXIANG ZHONG, NING YANG
  • Patent number: 10952651
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: March 23, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Publication number: 20190357820
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 28, 2019
    Inventors: ANDREA VARSAVSKY, XIAOLONG LI, MIKE C. LIU, YUXIANG ZHONG, NING YANG
  • Publication number: 20190343434
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Patent number: 10426385
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: October 1, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Publication number: 20190246960
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 15, 2019
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20190246961
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai
  • Patent number: 10327680
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Raghavendhar Gautham, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai, Jeffrey Nishida
  • Patent number: 10327686
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20190167170
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang