Patents by Inventor Mike Kwon

Mike Kwon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9312465
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: April 12, 2016
    Assignee: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon, Michael Solomensky
  • Publication number: 20150333045
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Application
    Filed: July 30, 2015
    Publication date: November 19, 2015
    Inventors: R. Scott West, Tao Tong, Mike Kwon, Michael Solomensky
  • Patent number: 9130139
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: September 8, 2015
    Assignee: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon
  • Patent number: 8803180
    Abstract: Using compression molding to form lenses over LED arrays on a metal core printed circuit board leaves a flash layer of silicone covering the contact pads that are later required to connect the arrays to power. A method for removing the flash layer involves blasting particles of sodium bicarbonate at the flash layer. A nozzle is positioned within thirty millimeters of the top surface of the flash layer. The stream of air that exits from the nozzle is directed towards the top surface at an angle between five and thirty degrees away from normal to the top surface. The particles of sodium bicarbonate are added to the stream of air and then collide into the top surface of the silicone flash layer until the flash layer laterally above the contact pads is removed. The edge of silicone around the cleaned contact pad thereafter contains a trace amount of sodium bicarbonate.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: August 12, 2014
    Assignee: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon
  • Publication number: 20140197430
    Abstract: A method of fabricating a substrate free light emitting diode (LED), includes arranging LED dies on a tape to form an LED wafer assembly, molding an encapsulation structure over at least one of the LED dies on a first side of the LED wafer assembly, removing the tape, forming a dielectric layer on a second side of the LED wafer assembly, forming an oversized contact region on the dielectric layer to form a virtual LED wafer assembly, and singulating the virtual LED wafer assembly into predetermined regions including at least one LED. The tape can be a carrier tape or a saw tape. Several LED dies can also be electrically coupled before the virtual LED wafer assembly is singulated into predetermined regions including at the electrically coupled LED dies.
    Type: Application
    Filed: March 14, 2014
    Publication date: July 17, 2014
    Applicant: BRIDGELUX, INC.
    Inventors: Mike Kwon, Gerry Keller, Scott West, Tao Tong, Babak Imangholi
  • Publication number: 20140169364
    Abstract: Methods and apparatus implementing a telephony terminal for connecting a telephone to a data network. In one implementation, a telephony system includes: a phone connection for connecting to a telephone; a network connection for connecting to a network; and a controller connected to said phone connection and to said network connection; wherein said controller provides a phone service for processing information for said phone connection, said controller provides a network service for processing information for said network connection, and said controller provides a network voice service for converting information to and from a network voice format.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: Wolkosiski Mgmt. LLC
    Inventors: Satoru Yukie, Mike Kwon, Craig M. Hagopian, Kazuhiko Shirai
  • Patent number: 8748202
    Abstract: A method of fabricating a substrate free light emitting diode (LED), includes arranging LED dies on a tape to form an LED wafer assembly, molding an encapsulation structure over at least one of the LED dies on a first side of the LED wafer assembly, removing the tape, forming a dielectric layer on a second side of the LED wafer assembly, forming an oversized contact region on the dielectric layer to form a virtual LED wafer assembly, and singulating the virtual LED wafer assembly into predetermined regions including at least one LED. The tape can be a carrier tape or a saw tape. Several LED dies can also be electrically coupled before the virtual LED wafer assembly is singulated into predetermined regions including at the electrically coupled LED dies.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 10, 2014
    Assignee: Bridgelux, Inc.
    Inventors: Mike Kwon, Gerry Keller, Scott West, Tao Tong, Babak Imangholi
  • Publication number: 20140131747
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon
  • Patent number: 8682278
    Abstract: Methods and apparatus implementing a telephony terminal for connecting a telephone to a data network. In one implementation, a telephony system includes: a phone connection for connecting to a telephone; a network connection for connecting to a network; and a controller connected to said phone connection and to said network connection; wherein said controller provides a phone service for processing information for said phone connection, said controller provides a network service for processing information for said network connection, and said controller provides a network voice service for converting information to and from a network voice format.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: March 25, 2014
    Assignee: Wolkosiski Mgmt. LLC
    Inventors: Satoru Yukie, Mike Kwon, Craig M. Hagopian, Kazuhiko Shirai
  • Publication number: 20140077235
    Abstract: A method of fabricating a substrate free light emitting diode (LED), includes arranging LED dies on a tape to form an LED wafer assembly, molding an encapsulation structure over at least one of the LED dies on a first side of the LED wafer assembly, removing the tape, forming a dielectric layer on a second side of the LED wafer assembly, forming an oversized contact region on the dielectric layer to form a virtual LED wafer assembly, and singulating the virtual LED wafer assembly into predetermined regions including at least one LED. The tape can be a carrier tape or a saw tape. Several LED dies can also be electrically coupled before the virtual LED wafer assembly is singulated into predetermined regions including at the electrically coupled LED dies.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: BRIDGELUX, INC.
    Inventors: Mike Kwon, Gerry Keller, Scott West, Tao Tong, Babak Imangholi
  • Publication number: 20140048832
    Abstract: Using compression molding to form lenses over LED arrays on a metal core printed circuit board leaves a flash layer of silicone covering the contact pads that are later required to connect the arrays to power. A method for removing the flash layer involves blasting particles of sodium bicarbonate at the flash layer. A nozzle is positioned within thirty millimeters of the top surface of the flash layer. The stream of air that exits from the nozzle is directed towards the top surface at an angle between five and thirty degrees away from normal to the top surface. The particles of sodium bicarbonate are added to the stream of air and then collide into the top surface of the silicone flash layer until the flash layer laterally above the contact pads is removed. The edge of silicone around the cleaned contact pad thereafter contains a trace amount of sodium bicarbonate.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 20, 2014
    Applicant: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon
  • Patent number: 8652860
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Grant
    Filed: April 8, 2012
    Date of Patent: February 18, 2014
    Assignee: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon, Michael Solomensky
  • Publication number: 20130337592
    Abstract: Using compression molding to form lenses over LED arrays on a metal core printed circuit board leaves a flash layer of silicone covering the contact pads that are later required to connect the arrays to power. A method for removing the flash layer involves blasting particles of sodium bicarbonate at the flash layer. A nozzle is positioned within thirty millimeters of the top surface of the flash layer. The stream of air that exits from the nozzle is directed towards the top surface at an angle between five and thirty degrees away from normal to the top surface. The particles of sodium bicarbonate are added to the stream of air and then collide into the top surface of the silicone flash layer until the flash layer laterally above the contact pads is removed. The edge of silicone around the cleaned contact pad thereafter contains a trace amount of sodium bicarbonate.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 19, 2013
    Applicant: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon
  • Patent number: 8610153
    Abstract: Using compression molding to form lenses over LED arrays on a metal core printed circuit board leaves a flash layer of silicone covering the contact pads that are later required to connect the arrays to power. A method for removing the flash layer involves blasting particles of sodium bicarbonate at the flash layer. A nozzle is positioned within thirty millimeters of the top surface of the flash layer. The stream of air that exits from the nozzle is directed towards the top surface at an angle between five and thirty degrees away from normal to the top surface. The particles of sodium bicarbonate are added to the stream of air and then collide into the top surface of the silicone flash layer until the flash layer laterally above the contact pads is removed. The edge of silicone around the cleaned contact pad thereafter contains a trace amount of sodium bicarbonate.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: December 17, 2013
    Assignee: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon
  • Patent number: 8536605
    Abstract: Using compression molding to form lenses over LED arrays on a metal core printed circuit board leaves a flash layer of silicone covering the contact pads that are later required to connect the arrays to power. A method for removing the flash layer involves blasting particles of sodium bicarbonate at the flash layer. A nozzle is positioned within thirty millimeters of the top surface of the flash layer. The stream of air that exits from the nozzle is directed towards the top surface at an angle between five and thirty degrees away from normal to the top surface. The particles of sodium bicarbonate are added to the stream of air and then collide into the top surface of the silicone flash layer until the flash layer laterally above the contact pads is removed. The edge of silicone around the cleaned contact pad thereafter contains a trace amount of sodium bicarbonate.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: September 17, 2013
    Assignee: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon
  • Publication number: 20130134459
    Abstract: Using compression molding to form lenses over LED arrays on a metal core printed circuit board leaves a flash layer of silicone covering the contact pads that are later required to connect the arrays to power. A method for removing the flash layer involves blasting particles of sodium bicarbonate at the flash layer. A nozzle is positioned within thirty millimeters of the top surface of the flash layer. The stream of air that exits from the nozzle is directed towards the top surface at an angle between five and thirty degrees away from normal to the top surface. The particles of sodium bicarbonate are added to the stream of air and then collide into the top surface of the silicone flash layer until the flash layer laterally above the contact pads is removed. The edge of silicone around the cleaned contact pad thereafter contains a trace amount of sodium bicarbonate.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon
  • Publication number: 20120187430
    Abstract: Standardized photon building blocks are packaged in molded interconnect structures to form a variety of LED array products. No electrical conductors pass between the top and bottom surfaces of the substrate upon which LED dies are mounted. Microdots of highly reflective material are jetted onto the top surface. Landing pads on the top surface of the substrate are attached to contact pads disposed on the underside of a lip of the interconnect structure. In a solder reflow process, the photon building blocks self-align within the interconnect structure. Conductors in the interconnect structure are electrically coupled to the LED dies in the photon building blocks through the contact pads and landing pads. Compression molding is used to form lenses over the LED dies and leaves a flash layer of silicone covering the landing pads. The flash layer laterally above the landing pads is removed by blasting particles at the flash layer.
    Type: Application
    Filed: April 8, 2012
    Publication date: July 26, 2012
    Applicant: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon, Michael Solomensky
  • Publication number: 20110228765
    Abstract: Methods and apparatus implementing a telephony terminal for connecting a telephone to a data network. In one implementation, a telephony system includes: a phone connection for connecting to a telephone; a network connection for connecting to a network; and a controller connected to said phone connection and to said network connection; wherein said controller provides a phone service for processing information for said phone connection, said controller provides a network service for processing information for said network connection, and said controller provides a network voice service for converting information to and from a network voice format.
    Type: Application
    Filed: May 23, 2011
    Publication date: September 22, 2011
    Applicant: WOLKOSISKI MGMT. LLC
    Inventors: Satoru Yukie, Mike Kwon, Craig M. Hagopian, Kazuhiko Shirai
  • Patent number: 7995987
    Abstract: Methods and apparatus implementing a telephony terminal for connecting a telephone to a data network. In one implementation, a telephony system includes: a phone connection for connecting to a telephone; a network connection for connecting to a network; and a controller connected to said phone connection and to said network connection; wherein said controller provides a phone service for processing inflation for said phone connection, said controller provides a network service for processing information for said network connection, and said controller provides a network voice service for converting information to and from a network voice format.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: August 9, 2011
    Assignee: Wolkosiski Mgmt, LLC
    Inventors: Satoru Yukie, Mike Kwon, Craig M. Hagopian, Kazuhiko Shirai
  • Patent number: 7363062
    Abstract: Methods and apparatus for implementing a wireless local loop phone that operates connected to or disconnected from a terminal unit. In one implementation, a phone system includes: a terminal unit comprising: a power source, a handset connection; a handset comprising: an antenna, a modem connected to the antenna, a terminal unit connection, a handset user interface; and a power connection cable connected to the handset connection and to the terminal unit connection; wherein the modem provides an air interface using the antenna, and the air interface provides a wireless local loop, when the handset is connected to the terminal unit through the handset connection and the terminal unit connection, the handset receives power from the power source through the power connection cable.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: April 22, 2008
    Assignee: Axesstel, Inc.
    Inventors: Satoru Yukie, Mike Kwon, Duk San Kim, Craig M. Hagopian