Patents by Inventor Mikhail Korolik

Mikhail Korolik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140059789
    Abstract: An apparatus for processing a substrate is provided. The apparatus includes a solid material having a support side and a contact side. The contact side has an outer surface, and the outer surface is configured to become softer relative to a remainder of the solid material when exposed to an activation solution. The apparatus includes a support structure configured to support the solid material from the support side of the solid material, such that the contact side of the solid material is oriented to face a surface of the substrate, when the substrate is present. Also provided is a gimbaled structure connected to the support structure. The gimbaled structure enabling the outer surface of the contact side to substantially align in a coplanar arrangement with the surface of the substrate, when the substrate is present. A force application structure is coupled to the gimbaled structure.
    Type: Application
    Filed: October 16, 2013
    Publication date: March 6, 2014
    Applicant: Lam Research Corporation
    Inventors: Erik M. Freer, John M. deLarios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred C. Redeker
  • Patent number: 8623456
    Abstract: A method of depositing a thin film by atomic layer deposition (ALD) on a substrate surface is disclosed. The disclosed method includes placing an ALD deposition proximity head above the substrate with at least one gas channel configured to dispense a gas to an active process region of the substrate surface. The ALD deposition proximity head extends over and is being spaced apart from the active process region of the substrate surface when present. After a pulse of a first reactant gas is dispensed on the active process region of the substrate surface underneath the proximity head, a pulse of a second reactant gas is dispensed on the active process region of the substrate surface underneath the proximity head to react with the first reactant gas to form a portion of the thin layer of ALD film on the surface of substrate underneath the proximity head.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: January 7, 2014
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi
  • Patent number: 8608859
    Abstract: A method is provided for removing contamination from a substrate. The method includes applying a cleaning solution having a dispersed phase, a continuous phase and particles dispersed within the continuous phase to a surface of the substrate. The method includes forcing one of the particles dispersed within the continuous phase proximate to one of the surface contaminants. The forcing is sufficient to overcome any repulsive forces between the particles and the surface contaminants so that the one of the particles and the one of the surface contaminants are engaged. The method also includes removing the engaged particle and surface contaminant from the surface of the substrate. A process to manufacture the cleaning material is also provided.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: December 17, 2013
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John M. deLarios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred C. Redeker
  • Patent number: 8591662
    Abstract: A method for cleaning a substrate is provided. The method initiates with applying an activation solution to a surface of the substrate. The activation solution and the surface of the substrate are contacted with a surface of a solid cleaning surface. The activation solution is absorbed into a portion of the solid cleaning element and then the substrate or the solid cleaning surface is moved relative to each other to clean the surface of the substrate. A method for cleaning the surface of the substrate with a solid cleaning element that experiences plastic deformation is also provided. Corresponding cleaning apparatuses are also provided.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: November 26, 2013
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John deLarios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred C. Redeker
  • Patent number: 8590550
    Abstract: A substrate holder is defined to support a substrate. A rotating mechanism is defined to rotate the substrate holder. An applicator is defined to extend over the substrate holder to dispense a cleaning material onto a surface of the substrate when present on the substrate holder. The applicator is defined to apply a downward force to the cleaning material on the surface of the substrate. In one embodiment the cleaning material is gelatinous.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 26, 2013
    Assignee: Lam Research Corporation
    Inventors: Mikhail Korolik, Erik M. Freer, John M. de Larios, Katrina Mikhaylichenko, Mike Ravkin, Fritz Redeker
  • Publication number: 20130284217
    Abstract: A substrate cleaning systems are provided. One system includes a proximity head system for applying a meniscus to a surface of a substrate during a cleaning operation. Also provided is a container for holding the solution, the solution being mixed from at least a continuous medium, a polymer material, and a solid material, the polymer material in the solution imparting a finite yield stress to the material, such that the solution is maintained in a stable elastic gel form. A pump coupled to the container is also provided for moving the solution from the container to the proximity head system, where the pump applies at least a minimum shear stress on the solution. The pump provides agitation that exceeds the finite yield stress causing the solution to flow. A conduit is provided between the container and the proximity head system.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 31, 2013
    Inventors: Erik M. Freer, John M. de Larios, Michael Ravkin, Mikhail Korolik, Katrina Mikhaylichenko, Fred C. Redeker
  • Patent number: 8555903
    Abstract: A cleaning material is disposed over a substrate. The cleaning material includes solid components dispersed within a liquid medium. A force is applied to the solid components within the liquid medium to bring the solid components within proximity to contaminants present on the substrate. The force applied to the solid components can be exerted by an immiscible component within the liquid medium. When the solid components are brought within sufficient proximity to the contaminants, an interaction is established between the solid components and the contaminants. Then, the solid components are moved away from the substrate such that the contaminants having interacted with the solid components are removed from the substrate.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: October 15, 2013
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John M. de Larios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred C. Redeker, Clint Thomas, John Parks
  • Patent number: 8535451
    Abstract: An apparatus and method are disclosed in which a semiconductor substrate having a surface containing contaminants is cleaned or otherwise subjected to chemical treatment using a foam. The semiconductor wafer is supported either on a stiff support (or a layer of foam) and foam is provided on the opposite surface of the semiconductor wafer while the semiconductor wafer is supported. The foam contacting the semiconductor wafer is pressurized using a form to produce a jammed foam. Relative movement between the form and the semiconductor wafer. such as oscillation parallel and/or perpendicular to the top surface of the semiconductor wafer. is then induced while the jammed foam is in contact with the semiconductor wafer to remove the undesired contaminants and/or otherwise chemically treat the surface of the semiconductor wafer using the foam.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: September 17, 2013
    Assignee: Lam Research Corporation
    Inventors: John M. de Larios, Mike Ravkin, Jeffrey Farber, Mikhail Korolik, Fritz Redeker, Aleksander Owczarz
  • Patent number: 8522801
    Abstract: A method for cleaning a substrate is provided. The method initiates with disposing a fluid layer having solid components therein to a surface of the substrate. A shear force directed substantially parallel to the surface of the substrate and toward an outer edge of the substrate is then created. The shear force may result from a normal or tangential component of a force applied to a solid body in contact with the fluid layer in one embodiment. The surface of the substrate is rinsed to remove the fluid layer. A cleaning system and apparatus are also provided.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: September 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John M. deLarios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred C. Redeker
  • Patent number: 8522799
    Abstract: An apparatus for cleaning a substrate is disclosed. The apparatus having a first head unit and a second head unit. The first head unit is positioned proximate to the surface of the substrate and has a first row of channels defined within configured to supply a foam to the surface of the substrate. The second head unit is positioned substantially adjacent to the first head unit and proximate to the surface of the substrate. A second and a third row of channels are defined within the second head unit. The second row of channels is configured to supply a fluid to the surface of the substrate. The third row of channels is configured to apply a vacuum to the surface of the substrate.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: September 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John M. de Larios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred C. Redeker, Clint Thomas, John Parks
  • Publication number: 20130206182
    Abstract: Apparatus, methods, and computer programs for cleaning opposed surfaces of a semiconductor wafer are presented. One apparatus includes first, second, and third valves, and one or more second drains. The first valves are coupled to a supply of rinsing solution and to first throughways that are coupled to an immersion tank above a region in the immersion tank, the region being defined by an area occupied by the substrate when the substrate is disposed vertically on a support within the immersion tank. The second valves are coupled to first drains and to second throughways that are coupled to the immersion tank below the region, and the third valves are coupled to a supply of cleaning solution and to third throughways that are coupled to the immersion tank below the region. Further, the second drains are coupled to fourth throughways that are coupled to the immersion tank above the region.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 15, 2013
    Inventors: Erik M. Freer, John M. de Larios, Michael Ravkin, Mikhail Korolik, Fritz C. Redeker
  • Patent number: 8480810
    Abstract: A method and system for cleaning a surface, having particulate matter thereon, of a substrate features impinging upon the surface a jet of a liquid having coupling elements entrained therein. A sufficient drag force is imparted upon the coupling elements to have the same move with respect to the liquid and cause the particulate matter to move with respect to the substrate.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: July 9, 2013
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John M. de Larios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fritz C. Redeker
  • Patent number: 8475599
    Abstract: A method for making a solution for use in preparing a surface of a substrate is provided. The method includes providing a continuous medium that adds a polymer material to the continuous medium. A fatty acid is adding to the continuous medium having the polymer material, and the polymer material defines a physical network that exerts forces in the solution that overcome buoyancy forces experienced by the fatty acid, thus preventing the fatty acids from moving within the solution until a yield stress of the polymer material is exceeded by an applied agitation. The applied agitation is from transporting the solution from a container to a preparation station that applies the solution to the surface of the substrate.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 2, 2013
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John M. de Larios, Michael Ravkin, Mikhail Korolik, Katrina Mikhaylichenko, Fritz C. Redeker
  • Publication number: 20130061887
    Abstract: A pressure is maintained within a volume within which a semiconductor wafer resides at a pressure that is sufficient to maintain a liquid state of a precursor fluid to a non-Newtonian fluid. The precursor fluid is disposed proximate to a material to be removed from the semiconductor wafer while maintaining the precursor fluid in the liquid state. The pressure is reduced in the volume within which the semiconductor wafer resides such that the precursor fluid disposed on the wafer within the volume is transformed into the non-Newtonian fluid. An expansion of the precursor fluid and movement of the precursor fluid relative to the wafer during transformation into the non-Newtonian fluid causes the resulting non-Newtonian fluid to remove the material from the semiconductor wafer.
    Type: Application
    Filed: November 6, 2012
    Publication date: March 14, 2013
    Inventors: Mikhail Korolik, Michael Ravkin, John deLarios, Fritz C. Redeker, John M. Boyd
  • Patent number: 8388762
    Abstract: A method and system for cleaning opposed surfaces of a semiconductor wafer having particulate matter thereon. The method includes generating relative movement between a fluid and the substrate. The relative movement is in a direction that is transverse to a normal to one of the opposed surfaces and creates two spaced-apart flows. Each of the flows is adjacent to one of the opposed surfaces that is different from the opposed surface that is adjacent to the remaining flow of the plurality of flows. The fluid has coupling elements entrained therein, and the relative movement is established to impart sufficient drag upon a subset of the coupling elements to create movement of the coupling elements of the subset within the fluid. In this manner, a quantity of the drag is imparted upon the particulate matter to cause the particulate matter to move with respect to the substrate.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: March 5, 2013
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John M. deLarios, Michael Ravkin, Mikhail Korolik, Fritz C. Redeker
  • Publication number: 20130048021
    Abstract: A method for cleaning a substrate is provided. The method initiates with applying an activation solution to a surface of the substrate. The activation solution and the surface of the substrate are contacted with a surface of a solid cleaning surface. The activation solution is absorbed into a portion of the solid cleaning element and then the substrate or the solid cleaning surface is moved relative to each other to clean the surface of the substrate. A method for cleaning the surface of the substrate with a solid cleaning element that experiences plastic deformation is also provided. Corresponding cleaning apparatuses are also provided.
    Type: Application
    Filed: October 26, 2012
    Publication date: February 28, 2013
    Inventors: Erik M. Freer, John deLarios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred C. Redeker
  • Publication number: 20130040460
    Abstract: A method of depositing a thin film by atomic layer deposition (ALD) on a substrate surface is disclosed. The disclosed method includes placing an ALD deposition proximity head above the substrate with at least one gas channel configured to dispense a gas to an active process region of the substrate surface. The ALD deposition proximity head extends over and is being spaced apart from the active process region of the substrate surface when present. After a pulse of a first reactant gas is dispensed on the active process region of the substrate surface underneath the proximity head, a pulse of a second reactant gas is dispensed on the active process region of the substrate surface underneath the proximity head to react with the first reactant gas to form a portion of the thin layer of ALD film on the surface of substrate underneath the proximity head.
    Type: Application
    Filed: September 6, 2012
    Publication date: February 14, 2013
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi
  • Patent number: 8323420
    Abstract: A pressure is maintained within a volume within which a semiconductor wafer resides at a pressure that is sufficient to maintain a liquid state of a precursor fluid to a non-Newtonian fluid. The precursor fluid is disposed proximate to a material to be removed from the semiconductor wafer while maintaining the precursor fluid in the liquid state. The pressure is reduced in the volume within which the semiconductor wafer resides such that the precursor fluid disposed on the wafer within the volume is transformed into the non-Newtonian fluid. An expansion of the precursor fluid and movement of the precursor fluid relative to the wafer during transformation into the non-Newtonian fluid causes the resulting non-Newtonian fluid to remove the material from the semiconductor wafer.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: December 4, 2012
    Assignee: Lam Research Corporation
    Inventors: Mikhail Korolik, Michael Ravkin, John deLarios, Fritz C. Redeker, John M. Boyd
  • Patent number: 8316866
    Abstract: A method for cleaning a substrate is provided. The method initiates with applying an activation solution to a surface of the substrate. The activation solution and the surface of the substrate are contacted with a surface of a solid cleaning surface. The activation solution is absorbed into a portion of the solid cleaning element and then the substrate or the solid cleaning surface is moved relative to each other to clean the surface of the substrate. A method for cleaning the surface of the substrate with a solid cleaning element that experiences plastic deformation is also provided. Corresponding cleaning apparatuses are also provided.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: November 27, 2012
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John M. deLarios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred C. Redeker
  • Patent number: 8287647
    Abstract: The embodiments provide apparatus and methods of depositing conformal thin film on interconnect structures by providing processes and systems using an atomic layer deposition (ALD). More specifically, each of the ALD systems includes a proximity head that has a small reaction volume right above an active process region of the substrate surface. The proximity head dispenses small amount of reactants and purging gas to be distributed and pumped away from the small reaction volume between the proximity head and the substrate in relatively short periods, which increases the through-put. In an exemplary embodiment, a proximity head for dispensing reactants and purging gas to deposit a thin film by atomic layer deposition (ALD) is provided. The proximity head is configured to sequentially dispensing a reactant gas and a purging gas to deposit a thin ALD film under the proximity head. The proximity head covers an active process region of a substrate surface.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: October 16, 2012
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi