Patents by Inventor Mikhail Yurievich Semenov

Mikhail Yurievich Semenov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230282637
    Abstract: Electrostatic discharge protection circuitry includes a transistor pass-gate coupled between potential source of electrostatic discharge-driven current (“ESD current”) and an input node of a circuit block is configured provide a sufficiently resistive current path between a first current terminal and a second current terminal of the pass gate such that, when an amount of charge sufficient to cause an ESD event accumulates at the potential ESD current source, a sufficient voltage drop occurs across the pass gate such that devices coupled to the input node of the circuit block are protected from experiencing a voltage drop across them that is above a predetermined threshold voltage.
    Type: Application
    Filed: February 9, 2023
    Publication date: September 7, 2023
    Inventors: Gijs Jan de Raad, Mikhail Yurievich Semenov, Yury Vladimirovich Alymov, Elena Valentinovna Somova
  • Patent number: 10868526
    Abstract: Synchronizer circuits having controllable metastability are provided, one of which includes: a first flip-flop circuit comprising a first master latch connected in series with a first slave latch; and a second flip-flop circuit comprising a second master latch connected in series with a second slave latch, wherein an output of the first flip-flop circuit is connected to an input of the second flip-flop circuit, at least a portion of the first flip-flop circuit is implemented in a first PWell isolated by an underlying a deep isolation NWell, at least a portion of the first flip-flop circuit is implemented in a first NWell that electrically contacts the deep isolation NWell, the first NWell is connected to a first bias voltage that is less than a positive power supply voltage, and the first PWell is connected to a second bias voltage that is greater than a negative power supply voltage.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: December 15, 2020
    Assignee: NXP USA, INC.
    Inventors: Mikhail Yurievich Semenov, Victor Mikhailovich Mikhailov, Sergei Victorovich Somov, Denis Borisovich Malashevich, Viacheslav Sergeyevich Kalashnikov
  • Patent number: 10855257
    Abstract: An integrated circuit includes a pulse generator having at least one delay circuit with an input that receives a clock signal and an output that provides a delayed clock pulse. The delayed clock pulse has a width proportional to an amount of time required to maintain a magnitude of the clock signal. A pulse latch circuit includes a clock input coupled to receive the delayed clock pulse, a data input coupled to receive a data value, and a data output, wherein the pulse latch circuit outputs and holds the data value at the data output each time the delayed clock pulse is provided at the clock input, and the pulse latch circuit operates on a continuous voltage source that supplies power during power on and power off modes.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 1, 2020
    Assignee: NXP USA, Inc.
    Inventors: Anis Mahmoud Jarrar, David Russell Tipple, Viacheslav Sergeyevich Kalashnikov, Mikhail Yurievich Semenov
  • Publication number: 20200195238
    Abstract: Synchronizer circuits having controllable metastability are provided, one of which includes: a first flip-flop circuit comprising a first master latch connected in series with a first slave latch; and a second flip-flop circuit comprising a second master latch connected in series with a second slave latch, wherein an output of the first flip-flop circuit is connected to an input of the second flip-flop circuit, at least a portion of the first flip-flop circuit is implemented in a first PWell isolated by an underlying a deep isolation NWell, at least a portion of the first flip-flop circuit is implemented in a first NWell that electrically contacts the deep isolation NWell, the first NWell is connected to a first bias voltage that is less than a positive power supply voltage, and the first PWell is connected to a second bias voltage that is greater than a negative power supply voltage.
    Type: Application
    Filed: July 1, 2019
    Publication date: June 18, 2020
    Inventors: Mikhail Yurievich SEMENOV, Victor Mikhailovich MIKHAILOV, Sergei Victorovich SOMOV, Denis Borisovich MALASHEVICH, Viacheslav Sergeyevich KALASHNIKOV
  • Patent number: 10382038
    Abstract: An electronic device includes a logic circuit, a pullup acceleration circuit, a first signal propagation path, and a second signal propagation path. The first signal propagation path propagates a logic value transition from an input terminal of the logic circuit to an output terminal of the logic circuit through the input terminal, two inverters of the logic circuit, a switch of the logic circuit, and the output terminal within a first amount of time based on a transition at the first input terminal. The second signal propagation path propagates the logic value transition from the input terminal to the output terminal through one inverter of the logic circuit and the pullup acceleration circuit within a second amount of time. The second amount of time is shorter than the first amount of time in response to the logic circuit being non-monotonic with respect to the logic value.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: August 13, 2019
    Assignee: NXP USA, Inc.
    Inventors: Vasily Vladimirovich Korolev, Victor Mikhailovich Mikhailov, Mikhail Yurievich Semenov
  • Publication number: 20190140644
    Abstract: An electronic device includes a logic circuit, a pullup acceleration circuit, a first signal propagation path, and a second signal propagation path. The first signal propagation path propagates a logic value transition from an input terminal of the logic circuit to an output terminal of the logic circuit through the input terminal, two inverters of the logic circuit, a switch of the logic circuit, and the output terminal within a first amount of time based on a transition at the first input terminal. The second signal propagation path propagates the logic value transition from the input terminal to the output terminal through one inverter of the logic circuit and the pullup acceleration circuit within a second amount of time. The second amount of time is shorter than the first amount of time in response to the logic circuit being non-monotonic with respect to the logic value.
    Type: Application
    Filed: May 10, 2018
    Publication date: May 9, 2019
    Inventors: Vasily Vladimirovich Korolev, Victor Mikhailovich Mikhailov, Mikhail Yurievich Semenov
  • Publication number: 20180294799
    Abstract: An integrated circuit includes a pulse generator having at least one delay circuit with an input that receives a clock signal and an output that provides a delayed clock pulse. The delayed clock pulse has a width proportional to an amount of time required to maintain a magnitude of the clock signal. A pulse latch circuit includes a clock input coupled to receive the delayed clock pulse, a data input coupled to receive a data value, and a data output, wherein the pulse latch circuit outputs and holds the data value at the data output each time the delayed clock pulse is provided at the clock input, and the pulse latch circuit operates on a continuous voltage source that supplies power during power on and power off modes.
    Type: Application
    Filed: October 30, 2017
    Publication date: October 11, 2018
    Inventors: Anis Mahmoud Jarrar, David Russell Tipple, Viacheslav Sengeyevich Kalashnikov, Mikhail Yurievich Semenov
  • Patent number: 10024909
    Abstract: Multi-bit data flip-flops are disclosed that provide bit initialization through propagation of scan bits. Input multiplexers are configured to select between input data bits and input scan bits based upon mode select signals. Master latches receive and latch outputs from the input multiplexers. Slave latches receive and latch outputs from the master latches and also provide propagated input scan bits to the input multiplexers. A first state for the mode select signals selects the input data bits for a data mode of operation, and a second state for the mode select signals selects the input scan bits for a scan mode of operation. Further, the input multiplexers, master latches, and slave latches are configured to operate in an initialization mode to pass a fixed input scan bit through the multi-bit data flip-flop based upon initialization signals (e.g., set and/or reset signals).
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: July 17, 2018
    Assignee: NXP USA, INC.
    Inventors: Mikhail Yurievich Semenov, Alexander Ivanovich Kornilov, Victor Mikhailovich Mikhailov, Denis Borisovich Malashevich, Viacheslav Sergeyevich Kalashnikov
  • Publication number: 20170292995
    Abstract: Multi-bit data flip-flops are disclosed that provide bit initialization through propagation of scan bits. Input multiplexers are configured to select between input data bits and input scan bits based upon mode select signals. Master latches receive and latch outputs from the input multiplexers. Slave latches receive and latch outputs from the master latches and also provide propagated input scan bits to the input multiplexers. A first state for the mode select signals selects the input data bits for a data mode of operation, and a second state for the mode select signals selects the input scan bits for a scan mode of operation. Further, the input multiplexers, master latches, and slave latches are configured to operate in an initialization mode to pass a fixed input scan bit through the multi-bit data flip-flop based upon initialization signals (e.g., set and/or reset signals).
    Type: Application
    Filed: October 21, 2016
    Publication date: October 12, 2017
    Inventors: Mikhail Yurievich Semenov, Alexander Ivanovich Kornilov, Victor Mikhailovich Mikhailov, Denis Borisovich Malashevich, Viacheslav Sergeyevich Kalashnikov
  • Patent number: 9685934
    Abstract: A multi-bit flip-flop includes at least two storage stages. Each of the storage stages includes redundant latches to suppress state corruptions resulting from soft error upset at the storage stage. In addition, the multi-bit flip-flop includes a split clock path that routes different shared clock signals that control the timing of the latches. The shared split clock path reduces or eliminates the impact of soft errors on the clock signals, thereby further limiting the impact of such errors on data stored at the flip-flop. In particular, the split clock path can be distributed over disparate cells in a layout of multi-bit flip-flop, thereby reducing the likelihood that a transient charge will cause a soft error in all paths of the split clock path.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: June 20, 2017
    Assignee: NXP USA, INC.
    Inventors: Alexander Ivanovich Kornilov, Victor Mikhailovich Mikhailov, Mikhail Yurievich Semenov, David Russell Tipple
  • Publication number: 20170149419
    Abstract: A multi-bit flip-flop includes at least two storage stages. Each of the storage stages includes redundant latches to suppress state corruptions resulting from soft error upset at the storage stage. In addition, the multi-bit flip-flop includes a split clock path that routes different shared clock signals that control the timing of the latches. The shared split clock path reduces or eliminates the impact of soft errors on the clock signals, thereby further limiting the impact of such errors on data stored at the flip-flop. In particular, the split clock path can be distributed over disparate cells in a layout of multi-bit flip-flop, thereby reducing the likelihood that a transient charge will cause a soft error in all paths of the split clock path.
    Type: Application
    Filed: June 3, 2016
    Publication date: May 25, 2017
    Inventors: ALEXANDER IVANOVICH KORNILOV, VICTOR MIKHAILOVICH MIKHAILOV, MIKHAIL YURIEVICH SEMENOV, DAVID RUSSELL TIPPLE
  • Patent number: 9626473
    Abstract: A CMOS device comprises a substrate with a plurality of regions, the regions including an N-type region and a P-type region which meet each other in a PN-boundary, two or more P-type active regions embedded in the N-type region, and two or more N-type active regions embedded in the P-type region. The PN-boundary or a section of the PN-boundary is a chain of line segments. Any two adjoining line segments of the chain are angled relative to each other at their connecting point. The CMOS device can be designed using abutting standard cells. For each of two or more operating points, rise delays and fall delays associated with one or more clock cells are estimated. If the estimated rise delays and fall delays satisfy a given set of constraints, the layout of the CMOS device is accepted. Otherwise the layout is updated and a new analysis round is performed.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: April 18, 2017
    Assignee: NXP USA, INC.
    Inventors: Denis Borisovich Malashevich, Viacheslav Sergeyevich Kalashnikov, Mikhail Yurievich Semenov
  • Publication number: 20170004241
    Abstract: A CMOS device comprises a substrate with a plurality of regions, the regions including an N-type region and a P-type region which meet each other in a PN-boundary, two or more P-type active regions embedded in the N-type region, and two or more N-type active regions embedded in the P-type region. The PN-boundary or a section of the PN-boundary is a chain of line segments. Any two adjoining line segments of the chain are angled relative to each other at their connecting point. The CMOS device can be designed using abutting standard cells. For each of two or more operating points, rise delays and fall delays associated with one or more clock cells are estimated. If the estimated rise delays and fall delays satisfy a given set of constraints, the layout of the CMOS device is accepted. Otherwise the layout is updated and a new analysis round is performed.
    Type: Application
    Filed: January 4, 2016
    Publication date: January 5, 2017
    Inventors: Denis Borisovich Malashevich, Viacheslav Sergeyevich Kalashnikov, Mikhail Yurievich Semenov