Patents by Inventor Mikhail Z. Smirnov

Mikhail Z. Smirnov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230103346
    Abstract: In a corneal measurement system, an optical element focuses an excitation light to an area of corneal tissue at a selected depth. In response, a fluorescing agent applied to the cornea generates a fluorescence emission. An aperture of a pinhole structure selectively transmits the fluorescence emission from the area of corneal tissue at the selected depth. A detector captures the selected fluorescence emission transmitted by the aperture and communicates information relating to a measurement of the selected fluorescence emission captured by the detector. A controller receives the information from the detector and determines a measurement of the fluorescing agent in the area of corneal tissue at the selected depth. The system may include a scan mechanism that causes the optical element to scan the cornea at a plurality of depths, and the controller may determine a measurement of the fluorescing agent in the cornea as a function of depth.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Inventors: Desmond Christopher Adler, Jun A. Zhang, Mikhail Z. Smirnov, Marc D. Friedman, David Usher, Grace Elizabeth Lytle, David C. Iannetta
  • Patent number: 11529050
    Abstract: In a corneal measurement system, an optical element focuses an excitation light to an area of corneal tissue at a selected depth. In response, a fluorescing agent applied to the cornea generates a fluorescence emission. An aperture of a pinhole structure selectively transmits the fluorescence emission from the area of corneal tissue at the selected depth. A detector captures the selected fluorescence emission transmitted by the aperture and communicates information relating to a measurement of the selected fluorescence emission captured by the detector. A controller receives the information from the detector and determines a measurement of the fluorescing agent in the area of corneal tissue at the selected depth. The system may include a scan mechanism that causes the optical element to scan the cornea at a plurality of depths, and the controller may determine a measurement of the fluorescing agent in the cornea as a function of depth.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: December 20, 2022
    Assignee: AVEDRO, INC.
    Inventors: Desmond Christopher Adler, Jun Zhang, Mikhail Z. Smirnov, Marc D. Friedman, David Usher, Grace Elizabeth Lytle, David C. Iannetta
  • Publication number: 20200229692
    Abstract: In a corneal measurement system, an optical element focuses an excitation light to an area of corneal tissue at a selected depth. In response, a fluorescing agent applied to the cornea generates a fluorescence emission. An aperture of a pinhole structure selectively transmits the fluorescence emission from the area of corneal tissue at the selected depth. A detector captures the selected fluorescence emission transmitted by the aperture and communicates information relating to a measurement of the selected fluorescence emission captured by the detector. A controller receives the information from the detector and determines a measurement of the fluorescing agent in the area of corneal tissue at the selected depth. The system may include a scan mechanism that causes the optical element to scan the cornea at a plurality of depths, and the controller may determine a measurement of the fluorescing agent in the cornea as a function of depth.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 23, 2020
    Inventors: Desmond Christopher Adler, Jun Zhang, Mikhail Z. Smirnov, Marc D. Friedman, David Usher, Grace Elizabeth Lytle, David C. Iannetta
  • Patent number: 10631726
    Abstract: In a corneal measurement system, an optical element focuses an excitation light to an area of corneal tissue at a selected depth. In response, a fluorescing agent applied to the cornea generates a fluorescence emission. An aperture of a pinhole structure selectively transmits the fluorescence emission from the area of corneal tissue at the selected depth. A detector captures the selected fluorescence emission transmitted by the aperture and communicates information relating to a measurement of the selected fluorescence emission captured by the detector. A controller receives the information from the detector and determines a measurement of the fluorescing agent in the area of corneal tissue at the selected depth. The system may include a scan mechanism that causes the optical element to scan the cornea at a plurality of depths, and the controller may determine a measurement of the fluorescing agent in the cornea as a function of depth.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 28, 2020
    Assignee: Avedro, Inc.
    Inventors: Desmond Christopher Adler, Jun Zhang, Mikhail Z. Smirnov, Marc D. Friedman, David Usher, Grace Elizabeth Lytle, David C. Iannetta
  • Publication number: 20180206719
    Abstract: In a corneal measurement system, an optical element focuses an excitation light to an area of corneal tissue at a selected depth. In response, a fluorescing agent applied to the cornea generates a fluorescence emission. An aperture of a pinhole structure selectively transmits the fluorescence emission from the area of corneal tissue at the selected depth. A detector captures the selected fluorescence emission transmitted by the aperture and communicates information relating to a measurement of the selected fluorescence emission captured by the detector. A controller receives the information from the detector and determines a measurement of the fluorescing agent in the area of corneal tissue at the selected depth. The system may include a scan mechanism that causes the optical element to scan the cornea at a plurality of depths, and the controller may determine a measurement of the fluorescing agent in the cornea as a function of depth.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 26, 2018
    Inventors: Desmond Christopher Adler, Jun Zhang, Mikhail Z. Smirnov, Marc D. Friedman, David Usher, Grace Elizabeth Lytle, David C. Iannetta
  • Publication number: 20120277659
    Abstract: Controls improve skin and/or eye safety for use of a light based photocosmetic device. The sensors having high spatial resolution and the low probability of sensor failure and improve skin and/or eye safety by differentiating safe and unsafe firing conditions. The system and/or the device is able to identify a topical present on the skin due to characteristics indicative of that topical that are sensed by the system. The topical can be identified by, for example, impedance level, marker(s), and/or multiple characteristics in a multi-phase system. The sensor(s) can improve safety by checking the presence of contact and the uniformity of contact with the identified topical throughout the treatment cycle.
    Type: Application
    Filed: April 30, 2012
    Publication date: November 1, 2012
    Applicant: PALOMAR MEDICAL TECHNOLOGIES, INC.
    Inventors: Ilya Yaroslavsky, Gregory B. Altshuler, Mikhail Z. Smirnov, David Tabatadze, Oldrich M. Laznicka, JR.
  • Publication number: 20100145321
    Abstract: Methods of treatment of tissue with electromagnetic radiation (EMR) to produce lattices of EMR-treated islets in the tissue are disclosed. Also disclosed are devices and systems for producing lattices of EMR-treated islets in tissue, and cosmetic and medical applications of such devices and systems.
    Type: Application
    Filed: November 25, 2009
    Publication date: June 10, 2010
    Applicant: PALOMAR MEDICAL TECHNOLOGIES, INC.
    Inventors: Gregory B. Altshuler, Ilya Yaroslavsky, Andrei V. Erofeev, David Tabatadze, Mikhail Z. Smirnov, James J. Childs