Patents by Inventor Mikko Mottonen

Mikko Mottonen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11985908
    Abstract: A circuit assembly for cooling a quantum electrical device, use of said circuit assembly, a system and a method for cooling a quantum electric device are provided. The circuit assembly comprises a quantum electric device to be cooled, at least one normal-metal-insulator-superconductor (NIS) tunnel junction electrically connected to the quantum electric device and at least one superconductive lead for supplying a drive voltage VQCR for said at least one NIS tunnel junction. The quantum electric device is cooled when the voltage VQCR is supplied to at least one NIS tunnel junction, said voltage VQCR being equal to or below the voltage N?/e, where N=1 or N=2, N is the number of NIS tunnel junctions electrically coupled in series with the means for generating the voltage, ? is the energy gap in the superconductor density of states, and e is the elementary charge.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: May 14, 2024
    Assignee: IQM Finland Oy
    Inventors: Mikko Möttönen, Kuan Yen Tan, Matti Partanen
  • Publication number: 20240135225
    Abstract: A tunable dissipative circuit is presented for shifting a frequency of a radio frequency signal or microwave signal in a cryogenically cooled environment. One or more couplers make couplings between a propagation path and a tunable resonance element and a controllable dissipator element. A first control input to said tunable resonance element allows changing a resonance frequency of said tunable resonance element with a first control signal. A second control input to said controllable dissipator element allows changing a damping rate of said controllable dissipator element with a second control signal.
    Type: Application
    Filed: March 4, 2021
    Publication date: April 25, 2024
    Inventors: Vasilii SEVRIUK, Juha HASSEL, Mikko MÖTTÖNEN
  • Patent number: 11907805
    Abstract: A three-dimensional superconducting qubit and a method for manufacturing the same are disclosed. In an example, a three-dimensional superconducting qubit comprises a structural base comprising one or more insulating materials, and superconductive patterns on surfaces of the structural base. The superconductive patterns form at least a capacitive part and an inductive part of the three-dimensional superconducting qubit. A first surface of the surfaces of the structural base defines a first plane and a second surface of the surfaces of the structural base defines a second plane, the second plane being oriented differently than the first plane. At least one superconductive pattern of the superconductive patterns extends from the first surface to the second surface.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: February 20, 2024
    Assignee: IQM Finland Oy
    Inventors: Caspar Ockeloen-Korppi, Tianyi Li, Wei Liu, Vasilii Sevriuk, Tiina Naaranoja, Mate Jenei, Jan Goetz, Kuan Yen Tan, Mikko Möttönen, Kok Wai Chan
  • Patent number: 11909395
    Abstract: For reading out a state of a qubit, a readout input waveform is injected into a system that comprises an information storage element for storing the state of the qubit and a readout resonator that is electromagnetically coupled to said information storage element. A readout output waveform is extracted from said system and detected. The injection of the readout input waveform takes place through an excitation port that is also used to inject excitation waveforms to the information storage element for affecting the state of the qubit. A phase of the readout input waveform is controllably shifted in the course of injecting it into the system.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 20, 2024
    Assignee: IQM Finland Oy
    Inventors: Mikko Möttönen, Joni Ikonen, Jan Goetz
  • Publication number: 20230371404
    Abstract: A quantum processing unit is disclosed. The quantum processing unit includes at least one superconducting qubit based on phase-biased linear and non-linear inductive-energy elements. A superconducting phase difference across the linear and non-linear inductive-energy elements is biased, for example, by an external magnetic field, such that quadratic potential energy terms of the linear and non-linear inductive-energy elements are cancelled at least partly. In a preferred embodiment, such cancellation is at least 30%. The partial cancellation of the quadratic potential makes it possible to implement a high-coherence high-anharmonicity superconducting qubit design.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 16, 2023
    Inventors: Eric Hyyppä, Mikko Möttönen, Juha Hassel, Jani Tuorila
  • Patent number: 11778928
    Abstract: A quantum processing unit is disclosed. The quantum processing unit includes at least one superconducting qubit that is based on phase-biased linear and non-linear inductive-energy elements. A superconducting phase difference across the linear and non-linear inductive-energy elements is biased, for example, by an external magnetic field, such that quadratic potential energy terms of the linear and non-linear inductive-energy elements are cancelled at least partly. In a preferred embodiment, such cancellation is at least 30%. The partial cancellation of the quadratic potential energy terms makes it possible to implement a high-coherence high-anharmonicity superconducting qubit design.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: October 3, 2023
    Assignee: IQM FINLAND OY
    Inventors: Eric Hyyppä, Mikko Möttönen, Juha Hassel, Jani Tuorila
  • Publication number: 20230024983
    Abstract: An arrangement, an apparatus, a quantum computing system, and a method are disclosed for reducing qubit leakage errors. In an example, an apparatus includes a qubit having a ground state and a plurality of excited states. The plurality of excited states include a lowest excited state. An energy difference between the ground state and the lowest excited state corresponds to a first frequency, and an energy difference between the lowest excited state and another excited state in the plurality of excited states corresponds to a second frequency. The apparatus also includes an energy dissipation structure to dissipate transferred energy, and a filter having a stopband and a passband. The filter is coupled to the qubit and to the energy dissipation structure. The stopband includes the first frequency and the passband includes the second frequency for reducing qubit leakage errors.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 26, 2023
    Inventors: Olli Ahonen, Johannes Heinsoo, Tianyi Li, Pasi Lähteenmäki, Mikko Möttönen, Jami Rönkkö, Jaakko Salo, Jorge Santos, Jani Tuorila
  • Patent number: 11469759
    Abstract: An arrangement, an apparatus, a quantum computing system, and a method are disclosed for reducing qubit leakage errors. In an example, an apparatus includes a qubit having a ground state and a plurality of excited states. The plurality of excited states include a lowest excited state. An energy difference between the ground state and the lowest excited state corresponds to a first frequency, and an energy difference between the lowest excited state and another excited state in the plurality of excited states corresponds to a second frequency. The apparatus also includes an energy dissipation structure to dissipate transferred energy, and a filter having a stopband and a passband. The filter is coupled to the qubit and to the energy dissipation structure. The stopband includes the first frequency and the passband includes the second frequency for reducing qubit leakage errors.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: October 11, 2022
    Assignee: IQM Finland Oy
    Inventors: Olli Ahonen, Johannes Heinsoo, Tianyi Li, Pasi Lähteenmäki, Mikko Möttönen, Jami Rönkkö, Jaakko Salo, Jorge Santos, Jani Tuorila
  • Patent number: 11456741
    Abstract: It is an objective to provide an arrangement for reducing qubit leakage errors in a quantum computing system. According to an embodiment, an arrangement for reducing qubit leakage errors includes a first qubit and a second qubit selectively couplable to each other. The arrangement also includes an energy dissipation structure that is selectively couplable to the first qubit. The energy dissipation structure is configured to dissipate energy transferred from the first qubit. The arrangement further includes a control unit configured to perform a first quantum operation to transfer a property of a quantum state from the first qubit to the second qubit, couple the first qubit to the energy dissipation structure for a time interval, and perform a second quantum operation to transfer the property of the quantum state from the second qubit to the first qubit after the time interval.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: September 27, 2022
    Assignee: IQM Finland Oy
    Inventors: Olli Ahonen, Johannes Heinsoo, Mikko Möttönen, Jami Rönkkö, Jaakko Salo, Jani Tuorila
  • Patent number: 11442086
    Abstract: A detector of microwave radiation includes a signal input and a detector output. An absorber element of ohmic conductivity is coupled to said signal input through a first length of superconductor. A variable impedance element, the impedance of which is configured to change as a function of temperature, is coupled to the detector output through a second length of superconductor. The detector also includes a heating input and a heating element coupled to the heating input through a third length of superconductor. The absorber element, the variable impedance element, and the heating element are coupled to each other through superconductor sections of lengths shorter than any of said first, second, and third lengths of superconductor.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: September 13, 2022
    Assignee: IQM Finland Oy
    Inventors: Mikko Mottonen, Roope Kokkoniemi, Visa Vesterinen, Russell Lake
  • Publication number: 20220190027
    Abstract: A quantum processing unit is disclosed. The quantum processing unit includes at least one superconducting qubit that is based on phase-biased linear and non-linear inductive-energy elements. A superconducting phase difference across the linear and non-linear inductive-energy elements is biased, for example, by an external magnetic field, such that quadratic potential energy terms of the linear and non-linear inductive-energy elements are cancelled at least partly. In a preferred embodiment, such cancellation is at least 30%. The partial cancellation of the quadratic potential energy terms makes it possible to implement a high-coherence high-anharmonicity superconducting qubit design.
    Type: Application
    Filed: June 2, 2021
    Publication date: June 16, 2022
    Inventors: Eric Hyyppä, Mikko Möttönen, Juha Hassel, Jani Tuorila
  • Publication number: 20220188683
    Abstract: A vector signal generator is capable of operating on microwave frequencies. It comprises a microwave resonator, an output for coupling microwave photons out of said microwave resonator, and a Josephson junction or junction array coupled to the microwave resonator for emitting microwave signals into the microwave resonator. A biasing circuit is provided for applying a bias to the Josephson junction or junction array. A tunable attenuator is coupled to said microwave resonator.
    Type: Application
    Filed: March 10, 2020
    Publication date: June 16, 2022
    Inventors: Jan Goetz, Mikko Möttönen, Juha Hassel, Tuomas Ollikainen
  • Publication number: 20220181537
    Abstract: It is an objective to provide an arrangement and a quantum computing system for qubit readout. According to an embodiment, an arrangement for qubit readout includes at least one qubit and a controllable energy relaxation structure comprising at least one junction. The controllable energy relaxation structure is coupled to the at least one qubit, and is configured to absorb, in response to a control signal, at least one photon from the at least one qubit via photon-assisted tunnelling of a charge through the at least one junction. The arrangement also includes a charge storage configured to store the tunnelled charge and a charge sensing structure coupled to the charge storage. The charge sensing structure is configured to provide a readout signal in response to detecting the tunnelled charge in the charge storage.
    Type: Application
    Filed: August 19, 2021
    Publication date: June 9, 2022
    Inventors: Juha Hassel, Vasilii Sevriuk, Johannes Heinsoo, Kuan Yen Tan, Mikko Möttönen, Hao Hsu
  • Publication number: 20220164690
    Abstract: A three-dimensional superconducting qubit and a method for manufacturing the same are disclosed. In an example, a three-dimensional superconducting qubit comprises a structural base comprising one or more insulating materials, and superconductive patterns on surfaces of the structural base. The superconductive patterns form at least a capacitive part and an inductive part of the three-dimensional superconducting qubit. A first surface of the surfaces of the structural base defines a first plane and a second surface of the surfaces of the structural base defines a second plane, the second plane being oriented differently than the first plane. At least one superconductive pattern of the superconductive patterns extends from the first surface to the second surface.
    Type: Application
    Filed: October 6, 2021
    Publication date: May 26, 2022
    Inventors: Caspar Ockeloen-Korppi, Tianyi Li, Wei Liu, Vasilii Sevriuk, Tiina Naaranoja, Mate Jenei, Jan Goetz, Kuan Yen Tan, Mikko Möttönen, Kok Wai Chan
  • Publication number: 20220138609
    Abstract: A circuit assembly for cooling a quantum electrical device, use of said circuit assembly, a system and a method for cooling a quantum electric device are provided. The circuit assembly comprises a quantum electric device to be cooled, at least one normal-metal-insulator-superconductor (NIS) tunnel junction electrically connected to the quantum electric device and at least one superconductive lead for supplying a drive voltage VQCR for said at least one NIS tunnel junction. The quantum electric device is cooled when the voltage VQCR is supplied to at least one NIS tunnel junction, said voltage VQCR being equal to or below the voltage N?/e, where N=1 or N=2, N is the number of NIS tunnel junctions electrically coupled in series with the means for generating the voltage, ? is the energy gap in the superconductor density of states, and e is the elementary charge.
    Type: Application
    Filed: November 11, 2021
    Publication date: May 5, 2022
    Applicant: IQM Finland Oy
    Inventors: Mikko MOTTONEN, Kuan Yen TAN, Matti PARTANEN
  • Publication number: 20220012617
    Abstract: A quantum computing circuit is disclosed herein. An example quantum computing circuit includes a first chip with at least one qubit thereon. The quantum computing circuit also includes a second chip with at least other quantum circuit elements other than qubits thereon. The first chip and the second chip are stacked together in a flip-chip configuration and attached to each other with bump bonding that includes bonding bumps.
    Type: Application
    Filed: December 31, 2020
    Publication date: January 13, 2022
    Inventors: Juha Hassel, Wei Liu, Vasilii Sevriuk, Johannes Heinsoo, Mate Jenei, Manjunath Venkatesh, Tianyi Li, Kok Wai Chan, Kuan Yen Tan, Mikko Möttönen
  • Publication number: 20220014192
    Abstract: It is an objective to provide an arrangement for reducing qubit leakage errors in a quantum computing system. According to an embodiment, an arrangement for reducing qubit leakage errors includes a first qubit and a second qubit selectively couplable to each other. The arrangement also includes an energy dissipation structure that is selectively couplable to the first qubit. The energy dissipation structure is configured to dissipate energy transferred from the first qubit. The arrangement further includes a control unit configured to perform a first quantum operation to transfer a property of a quantum state from the first qubit to the second qubit, couple the first qubit to the energy dissipation structure for a time interval, and perform a second quantum operation to transfer the property of the quantum state from the second qubit to the first qubit after the time interval.
    Type: Application
    Filed: November 30, 2020
    Publication date: January 13, 2022
    Inventors: Olli Ahonen, Johannes Heinsoo, Mikko Möttönen, Jami Rönkkö, Jaakko Salo, Jani Tuorila
  • Publication number: 20220006458
    Abstract: An arrangement, an apparatus, a quantum computing system, and a method are disclosed for reducing qubit leakage errors. In an example, an apparatus includes a qubit having a ground state and a plurality of excited states. The plurality of excited states include a lowest excited state. An energy difference between the ground state and the lowest excited state corresponds to a first frequency, and an energy difference between the lowest excited state and another excited state in the plurality of excited states corresponds to a second frequency. The apparatus also includes an energy dissipation structure to dissipate transferred energy, and a filter having a stopband and a passband. The filter is coupled to the qubit and to the energy dissipation structure. The stopband includes the first frequency and the passband includes the second frequency for reducing qubit leakage errors.
    Type: Application
    Filed: November 30, 2020
    Publication date: January 6, 2022
    Inventors: Olli Ahonen, Johannes Heinsoo, Tianyi Li, Pasi Lähteenmäki, Mikko Möttönen, Jami Rönkkö, Jaakko Salo, Jorge Santos, Jani Tuorila
  • Publication number: 20210406750
    Abstract: A method, system, and arrangement for resetting qubits are disclosed. An example system includes one or more quantum circuit refrigerators for resetting qubits. Each of the quantum circuit refrigerators includes a tunneling junction and a control input for receiving a control signal. Photon-assisted single-electron tunneling takes place across the respective tunneling junction in response to a control signal. Capacitive or inductive coupling elements between the qubits and the quantum circuit refrigerators couple each qubit to the quantum circuit refrigerator(s). The qubits, quantum circuit refrigerators, and coupling elements are located in a cryogenically cooled environment. A common control signal line to the control inputs crosses into the cryogenically cooled environment from a room temperature environment.
    Type: Application
    Filed: November 3, 2020
    Publication date: December 30, 2021
    Inventors: Tianyi Li, Kok Wai Chan, Kuan Yen Tan, Jan Goetz, Mikko Möttönen
  • Patent number: 11210601
    Abstract: A circuit assembly for cooling a quantum electrical device, use of said circuit assembly, a system and a method for cooling a quantum electric device are provided. The circuit assembly comprises a quantum electric device to be cooled, at least one normal-metal-insulator-superconductor (NIS) tunnel junction electrically connected to the quantum electric device and at least one superconductive lead for supplying a drive voltage VQCR for said at least one NIS tunnel junction. The quantum electric device is cooled when the voltage VQCR is supplied to at least one NIS tunnel junction, said voltage VQCR being equal to or below the voltage N?/e, where N=1 or N=2, N is the number of NIS tunnel junctions electrically coupled in series with the means for generating the voltage, ? is the energy gap in the superconductor density of states, and e is the elementary charge.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: December 28, 2021
    Assignee: IQM Finland Oy
    Inventors: Mikko Möttönen, Kuan Yen Tan, Matti Partanen