Patents by Inventor Min Bai

Min Bai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11979942
    Abstract: Implementation and communication methods, an apparatus and a system of a virtual subscriber identity module (VSIM) are provided. The implementation method includes: receiving a VSIM application request sent by a terminal, where the VSIM application request carries an identifier of a VSIM desired by the terminal; obtaining corresponding VSIM installation information according to the identifier of the desired VSIM; and sending the VSIM installation information to the terminal, so that the terminal installs the VSIM according to the VSIM installation information. According to the present application, a problem where an existing mobile operator network does not support the VSIM is effectively solved, and an effective and convenient operation scheme is provided for an existing domestic or international roaming service.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: May 7, 2024
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Zhidong Bai, Min Lu, Bingfu Wang
  • Patent number: 11972606
    Abstract: Systems and methods for facilitating communication with autonomous vehicles are provided. In one example embodiment, a computing system can obtain a first type of sensor data (e.g., camera image data) associated with a surrounding environment of an autonomous vehicle and/or a second type of sensor data (e.g., LIDAR data) associated with the surrounding environment of the autonomous vehicle. The computing system can generate overhead image data indicative of at least a portion of the surrounding environment of the autonomous vehicle based at least in part on the first and/or second types of sensor data. The computing system can determine one or more lane boundaries within the surrounding environment of the autonomous vehicle based at least in part on the overhead image data indicative of at least the portion of the surrounding environment of the autonomous vehicle and a machine-learned lane boundary detection model.
    Type: Grant
    Filed: May 8, 2023
    Date of Patent: April 30, 2024
    Assignee: UATC, LLC
    Inventors: Min Bai, Gellert Sandor Mattyus, Namdar Homayounfar, Shenlong Wang, Shrinidihi Kowshika Lakshmikanth, Raquel Urtasun
  • Publication number: 20230274540
    Abstract: Systems and methods for facilitating communication with autonomous vehicles are provided. In one example embodiment, a computing system can obtain a first type of sensor data (e.g., camera image data) associated with a surrounding environment of an autonomous vehicle and/or a second type of sensor data (e.g., LIDAR data) associated with the surrounding environment of the autonomous vehicle. The computing system can generate overhead image data indicative of at least a portion of the surrounding environment of the autonomous vehicle based at least in part on the first and/or second types of sensor data. The computing system can determine one or more lane boundaries within the surrounding environment of the autonomous vehicle based at least in part on the overhead image data indicative of at least the portion of the surrounding environment of the autonomous vehicle and a machine-learned lane boundary detection model.
    Type: Application
    Filed: May 8, 2023
    Publication date: August 31, 2023
    Inventors: Min Bai, Gellert Sandor Mattyus, Namdar Homayounfar, Shenlong Wang, Shrinidihi Kowshika Lakshmikanth, Raquel Urtasun
  • Patent number: 11682196
    Abstract: Systems and methods for facilitating communication with autonomous vehicles are provided. In one example embodiment, a computing system can obtain a first type of sensor data (e.g., camera image data) associated with a surrounding environment of an autonomous vehicle and/or a second type of sensor data (e.g., LIDAR data) associated with the surrounding environment of the autonomous vehicle. The computing system can generate overhead image data indicative of at least a portion of the surrounding environment of the autonomous vehicle based at least in part on the first and/or second types of sensor data. The computing system can determine one or more lane boundaries within the surrounding environment of the autonomous vehicle based at least in part on the overhead image data indicative of at least the portion of the surrounding environment of the autonomous vehicle and a machine-learned lane boundary detection model.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: June 20, 2023
    Assignee: UATC, LLC
    Inventors: Min Bai, Gellert Sandor Mattyus, Namdar Homayounfar, Shenlong Wang, Shrindihi Kowshika Lakshmikanth, Raquel Urtasun
  • Publication number: 20220153310
    Abstract: Techniques for improving the performance of an autonomous vehicle (AV) by automatically annotating objects surrounding the AV are described herein. A system can obtain sensor data from a sensor coupled to the AV and generate an initial object trajectory for an object using the sensor data. Additionally, the system can determine a fixed value for the object size of the object based on the initial object trajectory. Moreover, the system can generate an updated initial object trajectory, wherein the object size corresponds to the fixed value. Furthermore, the system can determine, based on the sensor data and the updated initial object trajectory, a refined object trajectory. Subsequently, the system can generate a multi-dimensional label for the object based on the refined object trajectory. A motion plan for controlling the AV can be generated based on the multi-dimensional label.
    Type: Application
    Filed: November 17, 2021
    Publication date: May 19, 2022
    Inventors: Bin Yang, Ming Liang, Wenyuan Zeng, Min Bai, Raquel Urtasun
  • Publication number: 20220101600
    Abstract: Systems and methods for identifying travel way features in real time are provided. A method can include receiving two-dimensional and three-dimensional data associated with the surrounding environment of a vehicle. The method can include providing the two-dimensional data as one or more input into a machine-learned segmentation model to output a two-dimensional segmentation. The method can include fusing the two-dimensional segmentation with the three-dimensional data to generate a three-dimensional segmentation. The method can include storing the three-dimensional segmentation in a classification database with data indicative of one or more previously generated three-dimensional segmentations. The method can include providing one or more datapoint sets from the classification database as one or more inputs into a machine-learned enhancing model to obtain an enhanced three-dimensional segmentation.
    Type: Application
    Filed: December 10, 2021
    Publication date: March 31, 2022
    Inventors: Raquel Urtasun, Min Bai, Shenlong Wang
  • Patent number: 11217012
    Abstract: Systems and methods for identifying travel way features in real time are provided. A method can include receiving two-dimensional and three-dimensional data associated with the surrounding environment of a vehicle. The method can include providing the two-dimensional data as one or more input into a machine-learned segmentation model to output a two-dimensional segmentation. The method can include fusing the two-dimensional segmentation with the three-dimensional data to generate a three-dimensional segmentation. The method can include storing the three-dimensional segmentation in a classification database with data indicative of one or more previously generated three-dimensional segmentations. The method can include providing one or more datapoint sets from the classification database as one or more inputs into a machine-learned enhancing model to obtain an enhanced three-dimensional segmentation.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 4, 2022
    Assignee: UATC, LLC
    Inventors: Raquel Urtasun, Min Bai, Shenlong Wang
  • Publication number: 20210326607
    Abstract: Systems and methods for facilitating communication with autonomous vehicles are provided. In one example embodiment, a computing system can obtain a first type of sensor data (e.g., camera image data) associated with a surrounding environment of an autonomous vehicle and/or a second type of sensor data (e.g., LIDAR data) associated with the surrounding environment of the autonomous vehicle. The computing system can generate overhead image data indicative of at least a portion of the surrounding environment of the autonomous vehicle based at least in part on the first and/or second types of sensor data. The computing system can determine one or more lane boundaries within the surrounding environment of the autonomous vehicle based at least in part on the overhead image data indicative of at least the portion of the surrounding environment of the autonomous vehicle and a machine-learned lane boundary detection model.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 21, 2021
    Inventors: Min Bai, Gellert Sandor Mattyus, Namdar Homayounfar, Shenlong Wang, Shrindihi Kowshika Lakshmikanth, Raquel Urtasun
  • Patent number: 11080537
    Abstract: Systems and methods for facilitating communication with autonomous vehicles are provided. In one example embodiment, a computing system can obtain a first type of sensor data (e.g., camera image data) associated with a surrounding environment of an autonomous vehicle and/or a second type of sensor data (e.g., LIDAR data) associated with the surrounding environment of the autonomous vehicle. The computing system can generate overhead image data indicative of at least a portion of the surrounding environment of the autonomous vehicle based at least in part on the first and/or second types of sensor data. The computing system can determine one or more lane boundaries within the surrounding environment of the autonomous vehicle based at least in part on the overhead image data indicative of at least the portion of the surrounding environment of the autonomous vehicle and a machine-learned lane boundary detection model.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: August 3, 2021
    Assignee: UATC, LLC
    Inventors: Min Bai, Gellert Sandor Mattyus, Namdar Homayounfar, Shenlong Wang, Shrindihi Kowshika Lakshmikanth, Raquel Urtasun
  • Patent number: 10803328
    Abstract: Systems and methods for detecting objects are provided. In one example, a computer-implemented method includes receiving sensor data from one or more sensors configured to generate sensor data. The method includes inputting the sensor data to a machine-learned model that generates a class prediction and an instance prediction for each of a plurality of portions of the sensor data. The instance prediction includes an energy value based on a distance to at least one object boundary. The machine learned model can be trained to generate a common energy value to represent the at least one object boundary. The method includes generating as outputs of the machine-learned model, an instance prediction and a class prediction corresponding to each of the plurality of portions of the sensor data. The method includes generating one or more object segments based at least in part on the instance predictions and the class predictions.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: October 13, 2020
    Assignee: UATC, LLC
    Inventors: Min Bai, Raquel Urtasun
  • Patent number: 10803325
    Abstract: Systems and methods for facilitating communication with autonomous vehicles are provided. In one example embodiment, a computing system can obtain rasterized LIDAR data associated with a surrounding environment of an autonomous vehicle. The rasterized LIDAR data can include LIDAR image data that is rasterized from a LIDAR point cloud. The computing system can access data indicative of a machine-learned lane boundary detection model. The computing system can input the rasterized LIDAR data associated with the surrounding environment of the autonomous vehicle into the machine-learned lane boundary detection model. The computing system can obtain an output from the machine-learned lane boundary detection model. The output can be indicative of one or more lane boundaries within the surrounding environment of the autonomous vehicle.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: October 13, 2020
    Assignee: UATC, LLC
    Inventors: Min Bai, Gellert Sandor Mattyus, Namdar Homayounfar, Shenlong Wang, Shrindihi Kowshika Lakshmikanth, Raquel Urtasun, Wei-Chiu Ma
  • Publication number: 20200160532
    Abstract: Systems and methods for identifying travel way features in real time are provided. A method can include receiving two-dimensional and three-dimensional data associated with the surrounding environment of a vehicle. The method can include providing the two-dimensional data as one or more input into a machine-learned segmentation model to output a two-dimensional segmentation. The method can include fusing the two-dimensional segmentation with the three-dimensional data to generate a three-dimensional segmentation. The method can include storing the three-dimensional segmentation in a classification database with data indicative of one or more previously generated three-dimensional segmentations. The method can include providing one or more datapoint sets from the classification database as one or more inputs into a machine-learned enhancing model to obtain an enhanced three-dimensional segmentation.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 21, 2020
    Inventors: Raquel Urtasun, Min Bai, Shenlong Wang
  • Patent number: 10550073
    Abstract: The present invention relates to a benzamide derivative of general formula I, a drug composition containing same and a use thereof as a drug, wherein the definitions of R1, Z and Q are as described in the description.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 4, 2020
    Assignee: CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd.
    Inventors: Ying Shi, Yi Mi, Hanyu Yang, Xuliang Wang, Denghuang Gong, Min Bai, Xiaozhuo Chen, Yujie Chen, Xuejiao Zhang, Yuxiu Ma, Qingzhi Gao
  • Patent number: 10527319
    Abstract: The present invention relates to a geothermal heat exchange system and a method of constructing a geothermal heat exchange system, and more specifically, to a geothermal heat exchange system which is to be installed in a borehole in the ground, the borehole being divided into a ground surface section and a shallow geothermal source section, the shallow geothermal source section of the borehole, which is hardly influenced by the atmospheric or ground surface temperatures, is filled with conventional heat conductive grouting material with high thermal conductivity, and the ground surface section of the borehole is filled with thermal insulation grouting material or thermal insulation cartridges to prevent the heat transferring medium in the geothermal heat exchange system, which has the geothermal heat obtained from the shallow geothermal source, from losing heat in the winter time or obtaining heat in the summer time when it passes through the ground surface section which is much influenced by the atmospheric
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: January 7, 2020
    Assignee: BIC INC.
    Inventor: Min Bai
  • Publication number: 20190147253
    Abstract: Systems and methods for facilitating communication with autonomous vehicles are provided. In one example embodiment, a computing system can obtain rasterized LIDAR data associated with a surrounding environment of an autonomous vehicle. The rasterized LIDAR data can include LIDAR image data that is rasterized from a LIDAR point cloud. The computing system can access data indicative of a machine-learned lane boundary detection model. The computing system can input the rasterized LIDAR data associated with the surrounding environment of the autonomous vehicle into the machine-learned lane boundary detection model. The computing system can obtain an output from the machine-learned lane boundary detection model. The output can be indicative of one or more lane boundaries within the surrounding environment of the autonomous vehicle.
    Type: Application
    Filed: September 5, 2018
    Publication date: May 16, 2019
    Inventors: Min Bai, Gellert Sandor Mattyus, Namdar Homayounfar, Shenlong Wang, Shrindihi Kowshika Lakshmikanth, Raquel Urtasun, Wei-Chiu Ma
  • Publication number: 20190147254
    Abstract: Systems and methods for facilitating communication with autonomous vehicles are provided. In one example embodiment, a computing system can obtain a first type of sensor data (e.g., camera image data) associated with a surrounding environment of an autonomous vehicle and/or a second type of sensor data (e.g., LIDAR data) associated with the surrounding environment of the autonomous vehicle. The computing system can generate overhead image data indicative of at least a portion of the surrounding environment of the autonomous vehicle based at least in part on the first and/or second types of sensor data. The computing system can determine one or more lane boundaries within the surrounding environment of the autonomous vehicle based at least in part on the overhead image data indicative of at least the portion of the surrounding environment of the autonomous vehicle and a machine-learned lane boundary detection model.
    Type: Application
    Filed: September 5, 2018
    Publication date: May 16, 2019
    Inventors: Min Bai, Gellert Sandor Mattyus, Namdar Homayounfar, Shenlong Wang, Shrindihi Kowshika Lakshmikanth, Raquel Urtasun
  • Publication number: 20180363953
    Abstract: The present invention relates to a geothermal heat exchange system and a method of constructing a geothermal heat exchange system, and more specifically, to a geothermal heat exchange system which is to be installed in a borehole in the ground, the borehole being divided into a ground surface section and a shallow geothermal source section, the shallow geothermal source section of the borehole, which is hardly influenced by the atmospheric or ground surface temperatures, is filled with conventional heat conductive grouting material with high thermal conductivity, and the ground surface section of the borehole is filled with thermal insulation grouting material or thermal insulation cartridges to prevent the heat transferring medium in the geothermal heat exchange system, which has the geothermal heat obtained from the shallow geothermal source, from losing heat in the winter time or obtaining heat in the summer time when it passes through the ground surface section which is much influenced by the atmospheric
    Type: Application
    Filed: June 11, 2018
    Publication date: December 20, 2018
    Inventor: Min Bai
  • Publication number: 20180312462
    Abstract: The present invention relates to a benzamide derivative of general formula I, a drug composition containing same and a use thereof as a drug, wherein the definitions of R1, Z and Q are as described in the description.
    Type: Application
    Filed: September 30, 2016
    Publication date: November 1, 2018
    Inventors: Ying SHI, Yi MI, Hanyu YANG, Xuliang WANG, Denghuang GONG, Min BAI, Xiaozhuo CHEN, Yujie CHEN, Xuejiao ZHANG, Yuxiu MA, Qingzhi GAO
  • Patent number: 8609137
    Abstract: The present invention discloses a novel soft capsule of butylphthalide and a process for preparing the same. The soft capsule of butylphthalide is composed of a capsule wall material and a drug-containing oil, wherein the drug-containing oil is essentially composed of butylphthalide and a vegetable oil as the diluent in a weight ratio of about 1:0˜10. The capsule wall material is composed of a capsule wall matrix, a plasticizer and water in a weight ratio of 1:0.2˜0.4:0.8˜1.3. The soft capsule of butylphthalide described in the present invention can mask the strong and special flavor of butylphthalide, and overcome the difficulties associated with formulating oily active ingredient into other oral formulation. The disintegration time of the soft capsule satisfies the requirement of Pharmacopoeia of P.R. China.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 17, 2013
    Assignees: CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC NBP Pharmaceutical Co., Ltd.
    Inventors: Jianqing Li, Min Bai, Wenmin Guo, Surui Chen, Liyun Liu, Guirong Zhou
  • Publication number: 20130076982
    Abstract: A television (TV) system and a booting method thereof are provided. In the present invention, by additionally adding a self-setting booting item into an OSD (on-screen display) menu provided by the TV system, a plurality of booting modes related to the TV system is self-defined by a user under the self-setting booting item. Accordingly, the TV system performs a booting procedure in response to the self-defined and selected booting mode. Since the booting mode of the TV system can be self-defined/selected by the user, the modules corresponding to functions that are not need by the user in the TV system can be turned off/disabled, which avails saving power and improving a booting speed of the TV system, and even increasing practicability of the TV system.
    Type: Application
    Filed: November 1, 2011
    Publication date: March 28, 2013
    Applicant: HANNSTAR DISPLAY CORPORATION
    Inventors: Yi-Min Bai, Chin-Sheng Lee, Jui-Fu Hsu