Patents by Inventor Min-Hui LIN

Min-Hui LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240162809
    Abstract: A power supply circuit is provided. The power factor correction (PFC) circuit is used to perform a power factor correction according to a first voltage to generate an intermediate voltage. The first storage capacitor is used to store a first electrical energy related to the intermediate voltage. The boost conversion circuit is connected to the PFC circuit and used to generate an output voltage according to the intermediate voltage. The boost conversion circuit includes a first post-stage inductor, a first post-stage diode and a first post-stage transistor. The second storage capacitor is used to store a second electrical energy related to the output voltage. The capacitance value of the second storage capacitor is less than the capacitance value of the first storage capacitor; the first electrical energy is completely or partially transferred as the second electrical energy.
    Type: Application
    Filed: March 6, 2023
    Publication date: May 16, 2024
    Inventors: Yu-Cheng LIN, Te-Hung YU, Chia-Hui LIANG, Min-Hao HSU
  • Patent number: 11977979
    Abstract: Systems and techniques are provided for generating one or more models. For example, a process can include obtaining a plurality of input images corresponding to faces of one or more people during a training interval. The process can include determining a value of the coefficient representing at least the portion of the facial expression for each of the plurality of input images during the training interval. The process can include determining, from the determined values of the coefficient representing at least the portion of the facial expression for each of the plurality of input images during the training interval, an extremum value of the coefficient representing at least the portion of the facial expression during the training interval. The process can include generating an updated bounding value for the coefficient representing at least the portion of the facial expression based on the initial bounding value and the extremum value.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: May 7, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Kuang-Man Huang, Min-Hui Lin, Ke-Li Cheng, Michel Adib Sarkis
  • Publication number: 20240127958
    Abstract: A method for disease risk assessment includes a data acquiring step, a preprocessing step, and a determining step. In the data acquiring step, a medical record of a subject, a static physiological information of the subject measured, and a dynamic physiological information corresponding to different actions of the subject are obtained. In the preprocessing step, a terminal device is applied for integrating the aforementioned data to generate a current data. In the determining step, the current data is inputted into a prediction model for calculation, so as to generate a disease risk assessment result corresponding to the subject. The assessment result includes a disease category, an onset probability corresponding to the disease category, and an estimated time of the onset of the disease. Thus, the present invention accurately assesses the disease probability of the subject in the future for health improvement and disease prevention and postponement.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 18, 2024
    Inventors: Min-Hui ChiouChang, Yung-Jiun Lin, Wei-Ting Hsieh
  • Publication number: 20230035282
    Abstract: Systems and techniques are provided for generating one or more models. For example, a process can include obtaining a plurality of input images corresponding to faces of one or more people during a training interval. The process can include determining a value of the coefficient representing at least the portion of the facial expression for each of the plurality of input images during the training interval. The process can include determining, from the determined values of the coefficient representing at least the portion of the facial expression for each of the plurality of input images during the training interval, an extremum value of the coefficient representing at least the portion of the facial expression during the training interval. The process can include generating an updated bounding value for the coefficient representing at least the portion of the facial expression based on the initial bounding value and the extremum value.
    Type: Application
    Filed: July 23, 2021
    Publication date: February 2, 2023
    Inventors: Kuang-Man HUANG, Min-Hui Lin, Ke-Li CHENG, Michel Adib SARKIS
  • Publication number: 20220155966
    Abstract: A hybrid cluster system includes at least one computing node for providing computing resources and at least one storage node for providing storage resources. A specification of the at least one computing node is identical to a specification of the at least one storage node.
    Type: Application
    Filed: December 14, 2020
    Publication date: May 19, 2022
    Inventors: Hsueh-Chih Lu, Chih-Jen Chin, Lien-Feng Chen, Min-Hui Lin
  • Patent number: 11189654
    Abstract: A plurality of radiation-sensing doped regions are formed in a substrate. A trench is formed in the substrate between the radiation-sensing doped regions. A SiOCN layer is filled in the trench by reacting Bis(tertiary-butylamino)silane (BTBAS) and a gas mixture comprising N2O, N2 and O2 through a plasma enhanced atomic layer deposition (PEALD) method, to form an isolation structure between the radiation-sensing doped regions.
    Type: Grant
    Filed: June 14, 2020
    Date of Patent: November 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Ching Chang, Sheng-Chan Li, Chih-Hui Huang, Jian-Shin Tsai, Cheng-Yi Wu, Chia-Hsing Chou, Yi-Ming Lin, Min-Hui Lin, Chin-Szu Lee
  • Publication number: 20200312894
    Abstract: A plurality of radiation-sensing doped regions are formed in a substrate. A trench is formed in the substrate between the radiation-sensing doped regions. A SiOCN layer is filled in the trench by reacting Bis(tertiary-butylamino)silane (BTBAS) and a gas mixture comprising N2O, N2 and O2 through a plasma enhanced atomic layer deposition (PEALD) method, to form an isolation structure between the radiation-sensing doped regions.
    Type: Application
    Filed: June 14, 2020
    Publication date: October 1, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Ching Chang, Sheng-Chan Li, Chih-Hui Huang, Jian-Shin Tsai, Cheng-Yi Wu, Chia-Hsing Chou, Yi-Ming Lin, Min-Hui Lin, Chin-Szu Lee
  • Patent number: 10679043
    Abstract: A 3-D path detection system includes an image capture device, a radar device and a computing module. The image capture device is provided to produce a dynamic image for calculating the x- and y-direction (transverse) pixel-value displacements according to a captured moving object image. The radar device is configured to transmit an input wireless signal to a moving object and receive a reflection signal from the moving object, and is configured to calculate a z-direction (longitudinal) displacement of the moving object according to a Doppler shift in the reflection signal. The computing module is configured to construct a 3-D path of the moving object according to the x- and y-direction pixel-value displacements of the moving object image and the z-direction displacement of the moving object.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: June 9, 2020
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Tzyy-Sheng Horng, Chia-Hung Yeh, Fu-Kang Wang, Mu-Cyun Tang, Chien-Lun Chen, Min-Hui Lin
  • Patent number: 10497729
    Abstract: An image sensor includes a substrate having a first region and a second region. The image sensor further includes a dielectric layer over the substrate. The image sensor further includes a conductive layer over the dielectric layer, wherein in the first region the conductive layer has a grid shape and in the second region a portion of the conductive layer is concave toward the substrate. The image sensor further includes a protective layer, wherein the protective layer is over the conductive layer in the first region, and over a top surface and along sidewalls of the conductive layer in the second region.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: December 3, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yi Wu, Chun-Chih Lin, Jian-Shin Tsai, Min-Hui Lin, Wen-Shan Chang, Yi-Ming Lin, Chao-Ching Chang, C. H. Chen, Chin-Szu Lee, Y. T. Tsai
  • Patent number: 10325949
    Abstract: An image sensor device is provided. The image sensor device includes a substrate having a first surface, a second surface, and a light-sensing region. The image sensor device includes a first isolation structure in the substrate and adjacent to the first surface. The first isolation structure surrounds the light-sensing region. The image sensor device includes a second isolation structure passing through the first isolation structure and the substrate under the first isolation structure. The second isolation structure surrounds the light-sensing region and a portion of the first isolation structure.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: June 18, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Chao-Ching Chang, Sheng-Chan Li, Cheng-Hsien Chou, Tsung-Wei Huang, Min-Hui Lin, Yi-Ming Lin
  • Publication number: 20190088692
    Abstract: An image sensor includes a substrate having a first region and a second region. The image sensor further includes a dielectric layer over the substrate. The image sensor further includes a conductive layer over the dielectric layer, wherein in the first region the conductive layer has a grid shape and in the second region a portion of the conductive layer is concave toward the substrate. The image sensor further includes a protective layer, wherein the protective layer is over the conductive layer in the first region, and over a top surface and along sidewalls of the conductive layer in the second region.
    Type: Application
    Filed: November 19, 2018
    Publication date: March 21, 2019
    Inventors: Cheng-Yi WU, Chun-Chih LIN, Jian-Shin TSAI, Min-Hui LIN, Wen-Shan CHANG, Yi-Ming LIN, Chao-Ching CHANG, C. H. CHEN, Chin-Szu LEE, Y. T. TSAI
  • Publication number: 20190035829
    Abstract: An image sensor device is provided. The image sensor device includes a substrate having a first surface, a second surface, and a light-sensing region. The image sensor device includes a first isolation structure in the substrate and adjacent to the first surface. The first isolation structure surrounds the light-sensing region. The image sensor device includes a second isolation structure passing through the first isolation structure and the substrate under the first isolation structure. The second isolation structure surrounds the light-sensing region and a portion of the first isolation structure.
    Type: Application
    Filed: August 6, 2018
    Publication date: January 31, 2019
    Inventors: Chao-Ching CHANG, Sheng-Chan LI, Cheng-Hsien CHOU, Tsung-Wei HUANG, Min-Hui LIN, Yi-Ming LIN
  • Patent number: 10186454
    Abstract: A semiconductor structure includes a first dielectric layer, a first conductive via, a second conductive via and an etch stop layer. The first conductive via and the second conductive via are respectively disposed in the first dielectric layer. The etch stop layer is disposed on the first dielectric layer and contacts the first and second conductive vias. The etch stop layer includes nitrogen-and-oxygen-doped silicon carbide (NODC).
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: January 22, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Han Lin, Han-Sheng Weng, Chao-Ching Chang, Jian-Shin Tsai, Yi-Ming Lin, Min-Hui Lin
  • Publication number: 20180366369
    Abstract: A semiconductor structure includes a first dielectric layer, a first conductive via, a second conductive via and an etch stop layer. The first conductive via and the second conductive via are respectively disposed in the first dielectric layer. The etch stop layer is disposed on the first dielectric layer and contacts the first and second conductive vias. The etch stop layer includes nitrogen-and-oxygen-doped silicon carbide (NODC).
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Cheng-Han LIN, Han-Sheng WENG, Chao-Ching CHANG, Jian-Shin TSAI, Yi-Ming LIN, Min-Hui LIN
  • Publication number: 20180357474
    Abstract: A 3-D path detection system includes an image capture device, a radar device and a computing module. The image capture device is provided to produce a dynamic image for calculating the x- and y-direction (transverse) pixel-value displacements according to a captured moving object image. The radar device is configured to transmit an input wireless signal to a moving object and receive a reflection signal from the moving object, and is configured to calculate a z-direction (longitudinal) displacement of the moving object according to a Doppler shift in the reflection signal. The computing module is configured to construct a 3-D path of the moving object according to the x- and y-direction pixel-value displacements of the moving object image and the z-direction displacement of the moving object.
    Type: Application
    Filed: January 15, 2018
    Publication date: December 13, 2018
    Inventors: Tzyy-Sheng Horng, Chia-Hung Yeh, Fu-Kang Wang, Mu-Cyun Tang, Chien-Lun Chen, Min-Hui Lin
  • Publication number: 20180337203
    Abstract: A method of fabricating an image sensor includes depositing a first dielectric layer over a substrate, removing a portion of the first dielectric layer from the substrate to form a trench, depositing a conductive layer over the first dielectric layer and in the trench, forming a protective layer lining a top surface of the conductive layer and sidewalls and a bottom surface of the groove in the conductive layer, and removing a portion of the conductive layer to form a grid structure. A groove corresponding to the trench is formed in the conductive layer.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 22, 2018
    Inventors: Cheng-Yi WU, Chun-Chih LIN, Jian-Shin TSAI, Min-Hui LIN, Wen-Shan CHANG, Yi-Ming LIN, Chao-Ching CHANG, C. H. CHEN, Chin-Szu LEE, Y. T. TSAI
  • Patent number: 10134790
    Abstract: A method of fabricating an image sensor includes depositing a first dielectric layer over a substrate, removing a portion of the first dielectric layer from the substrate to form a trench, depositing a conductive layer over the first dielectric layer and in the trench, forming a protective layer lining a top surface of the conductive layer and sidewalls and a bottom surface of the groove in the conductive layer, and removing a portion of the conductive layer to form a grid structure. A groove corresponding to the trench is formed in the conductive layer.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: November 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yi Wu, Chun-Chih Lin, Jian-Shin Tsai, Min-Hui Lin, Wen-Shan Chang, Yi-Ming Lin, Chao-Ching Chang, C. H. Chen, Chin-Szu Lee, Y. T. Tsai
  • Patent number: 10062656
    Abstract: A semiconductor device includes a substrate, a dielectric structure, a top metal layer and a bonding structure. The dielectric structure is disposed on the substrate. The top metal layer is disposed in the dielectric structure. The bonding structure is disposed on the dielectric structure and the top metal layer. The bonding structure includes a silicon oxide layer, a silicon oxy-nitride layer, a conductive bonding layer and a barrier layer. The silicon oxide layer is disposed on the dielectric structure. The silicon oxy-nitride layer covers the silicon oxide layer. The conductive bonding layer is disposed in the silicon oxide layer and the silicon oxy-nitride layer. The barrier layer covers a sidewall and a bottom of the conductive bonding layer.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: August 28, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Chang, Sheng-Chan Li, Wen-Jen Tsai, Chih-Hui Huang, Jian-Shin Tsai, Cheng-Yi Wu, Yi-Ming Lin, Min-Hui Lin
  • Patent number: 10050102
    Abstract: Semiconductor devices and manufacturing method thereof are disclosed. The semiconductor device includes a substrate, a device layer, first and second conductive layers, first and second vias, and a MIM capacitor structure. The substrate includes active and passive regions. The device layer is in the active region. The first conductive layer is over the device layer. The second conductive layer is over the first conductive layer, wherein the first conductive layer is disposed between the device layer and the second conductive layer. The first via electrically connects the first and the second conductive layers. The MIM capacitor structure is between the first and the second conductive layers and in the passive region, and includes first and second electrodes and a capacitor dielectric layer therebetween. The capacitor dielectric layer includes Group IIIA-metal oxide or nitride. The second via electrically connects the second conductive layer and one of the first and second electrodes.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Ching Chang, Cheng-Yi Wu, Jian-Shin Tsai, Min-Hui Lin, Yi-Ming Lin, Chin-Szu Lee, Wen-Shan Chang, Yi-Hui Chen
  • Patent number: 10043841
    Abstract: A method for forming an image sensor device is provided. The method includes providing a substrate having a front surface and a back surface. The method includes removing a first portion of the substrate to form a first trench. The method includes forming a first isolation structure in the first trench. The first isolation structure has a top surface. The method includes removing a second portion of the first isolation structure and a third portion of the substrate to form a second trench passing through the first isolation structure and extending into the substrate. The method includes forming a second isolation structure in the second trench. The method includes forming a light-sensing region in the substrate. The method includes removing a fourth portion of the substrate to expose a first bottom portion of the second isolation structure and a backside of the light-sensing region.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: August 7, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Chang, Sheng-Chan Li, Cheng-Hsien Chou, Tsung-Wei Huang, Min-Hui Lin, Yi-Ming Lin