Patents by Inventor Mina Farag

Mina Farag has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8450026
    Abstract: A membrane electrode assembly for a solid electrolyte fuel cell comprises: an electrode having a layer of nano-structured material on one of its faces, an electrocatalyst deposited on the nano-structured material and an electrolyte deposited on the electrocatalyst/nano-structured material. The nano-structured material can comprise carbon, silicon, graphite, boron, titanium and be in the form of multi-walled nano-tubes (MWNTs), single-walled nano-tubes (SWNTs), nano-fibers, nano-rods or a combination thereof. The nano-structured material can be grown or deposited on one face of an electrode of the cell or on a substrate such as a flexible sheet material of carbon fibers using chemical vapor deposition. The electrocatalyst and electrolyte can be incorporated in the nano structured material using physical vapor deposition (PVD), ion beam sputtering or molecular beam epitaxy (MBE).
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: May 28, 2013
    Assignee: Intematix Corporation
    Inventors: Mina Farag, Chris Bajorek
  • Patent number: 8211825
    Abstract: A methanol oxidation catalyst comprises a material of composition: PtxMzTau in which Pt is platinum, Ta is tantalum, M is an element includes at least one selected from the group consisting of V (vanadium), W (tungsten), Ni (nickel) and Mo (molybdenum), x is 40 to 98 at. %, z is 1.5 to 55 at. %, and u is 0.5 to 40 at. %. To maximize catalytic activity the material is preferably in the form of nanoparticles. The values of x, z and u are selected such that the element exhibits X-ray photoelectron spectroscopy peaks derived from an oxygen bond and a metal bond in which a peak area derived from the oxygen bond is twice or less of a peak area derived from the metal bond.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: July 3, 2012
    Assignees: Kabushiki Kaisha Toshiba, Intematix Corporation
    Inventors: Wu Mei, Taishi Fukazawa, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano, Mina Farag, Shinji Aoki, Yi-Qun Li
  • Patent number: 7846862
    Abstract: A methanol oxidation catalyst is provided, which includes nanoparticles having a composition represented by the following formula 1: PtxRuyTzQu ??formula 1 In the formula 1, the T-element is at least one selected from a group consisting of Mo, W and V and the Q-element is at least one selected from a group consisting of Nb, Cr, Zr and Ti, x is 40 to 90 at. %, y is 0 to 9.9 at. %, z is 3 to 70 at. % and u is 0.5 to 40 at. %. The area of the peak derived from oxygen bond of T-element is 80% or less of the area of the peak derived from metal bond of T-element in a spectrum measured by an X-ray photoelectron spectral method.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 7, 2010
    Assignees: Kabushiki Kaisha Toshiba, Intematix Corporation
    Inventors: Wu Mei, Taishi Fukazawa, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano, Mina Farag, Yi-Qun Li, Shinji Aoki
  • Patent number: 7723260
    Abstract: A methanol oxidation catalyst is provided, which includes nanoparticles having a composition represented by the following formula (1): PtxRuyMozTu??(1) In the formula (1), the T-element is at least one selected from the group consisting of W and V, x is 20 to 80 at. %, y is 10 to 60 at. %, z is 1 to 30 at. % and u is 1 to 30 at. %. The area of the peak derived from oxygen bond of T-element is 80% or less of the area of the peak derived from metal bond of T-element in a spectrum measured by an X-ray photoelectron spectral method.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 25, 2010
    Assignees: Kabushiki Kaisha Toshiba, Intematix Corporation
    Inventors: Wu Mei, Taishi Fukazawa, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano, Mina Farag, Yi-Qun Li, Shinji Aoki
  • Publication number: 20090247401
    Abstract: A methanol oxidation catalyst comprises a material of composition: PtxMzTau in which Pt is platinum, Ta is tantalum, M is an element includes at least one selected from the group consisting of V (vanadium), W (tungsten), Ni (nickel) and Mo (molybdenum), x is 40 to 98 at. %, z is 1.5 to 55 at. %, and u is 0.5 to 40 at. %. To maximize catalytic activity the mater al is preferably in the form of nanoparticles. The values of x, z and u are selected such that the element exhibits X-ray photoelectron spectroscopy peaks derived from an oxygen bond and a metal bond in which a peak area derived from the oxygen bond is twice or less of a peak area derived from the metal bond.
    Type: Application
    Filed: March 10, 2009
    Publication date: October 1, 2009
    Inventors: Wu Mei, Taishi Fukazawa, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano, Mina Farag, Shinji Aoki, Yi-Qun Li
  • Publication number: 20090148740
    Abstract: A membrane electrode assembly for a solid electrolyte fuel cell comprises: an electrode having a layer of nano-structured material on one of its faces, an electrocatalyst deposited on the nano-structured material and an electrolyte deposited on the electrocatalyst/nano-structured material. The nano-structured material can comprise carbon, silicon, graphite, boron, titanium and be in the form of multi-walled nano-tubes (MWNTs), single-walled nano-tubes (SWNTs), nano-fibers, nano-rods or a combination thereof. The nano-structured material can be grown or deposited on one face of an electrode of the cell or on a substrate such as a flexible sheet material of carbon fibers using chemical vapor deposition. The electrocatalyst and electrolyte can be incorporated in the nano structured material using physical vapor deposition (PVD), ion beam sputtering or molecular beam epitaxy (MBE).
    Type: Application
    Filed: May 27, 2008
    Publication date: June 11, 2009
    Applicant: Intematix Corporation
    Inventors: Mina Farag, Chris Bajorek
  • Publication number: 20090081391
    Abstract: A methanol oxidation catalyst is provided, which includes nanoparticles having a composition represented by the following formula 1: PtxRuyTzQu ??formula 1 In the formula 1, the T-element is at least one selected from a group consisting of Mo, W and V and the Q-element is at least one selected from a group consisting of Nb, Cr, Zr and Ti, x is 40 to 90 at. %, y is 0 to 9.9 at. %, z is 3 to 70 at. % and u is 0.5 to 40 at. %. The area of the peak derived from oxygen bond of T-element is 80% or less of the area of the peak derived from metal bond of T-element in a spectrum measured by an X-ray photoelectron spectral method.
    Type: Application
    Filed: September 28, 2007
    Publication date: March 26, 2009
    Inventors: Wu MEI, Taishi FUKAZAWA, Itsuko MIZUTANI, Tsuyoshi KOBAYASHI, Yoshihiko NAKANO, Mina FARAG, Yi-Qun LI, Shinji AOKI
  • Publication number: 20090082198
    Abstract: A methanol oxidation catalyst is provided, which includes nanoparticles having a composition represented by the following formula (1): PtxRuyMozTu ??(1) In the formula (1), the T-element is at least one selected from the group consisting of W and V, x is 20 to 80 at. %, y is 10 to 60 at. %, z is 1 to 30 at. % and u is 1 to 30 at. %. The area of the peak derived from oxygen bond of T-element is 80% or less of the area of the peak derived from metal bond of T-element in a spectrum measured by an X-ray photoelectron spectral method.
    Type: Application
    Filed: September 28, 2007
    Publication date: March 26, 2009
    Inventors: Wu Mei, Taishi Fukazawa, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano, Mina Farag, Yi-Qun Li, Shinji Aoki