Patents by Inventor Mineo Shimotsusa

Mineo Shimotsusa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180102384
    Abstract: A method of manufacturing a solid-state image sensor, includes forming a first isolation region of a first conductivity type in a semiconductor layer having first and second surfaces, the forming the first isolation region including first implantation for implanting ions into the semiconductor layer through the first surface, forming charge accumulation regions of a second conductivity type in the semiconductor layer, performing first annealing, forming an interconnection on a side of the first surface of the semiconductor layer after the first annealing, and forming a second isolation region of the first conductivity type in the semiconductor layer, the forming the second isolation region including second implantation for implanting ions into the semiconductor layer through the second surface. The first and second isolation regions are arranged between the adjacent charge accumulation regions.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 12, 2018
    Inventor: Mineo Shimotsusa
  • Publication number: 20180090527
    Abstract: A manufacturing method includes a first process for forming a first gate electrode for a first MOS transistor and a second gate electrode for a second MOS transistor on a substrate including a semiconductor region defined by an insulator region for element isolation, a second process for masking a portion located above the semiconductor region of the first gate electrode to introduce an impurity to a source-drain region of the first MOS transistor, and a third process for forming a first conductor member being in contact with the portion of the first gate electrode through a first hole disposed on an insulator member covering the substrate and a second conductor member being in contact with the second gate electrode through a second hole disposed on the insulator member.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 29, 2018
    Inventors: Mineo Shimotsusa, Masatsugu Itahashi, Yusuke Onuki, Nobuaki Kakinuma, Masato Fujita
  • Patent number: 9929202
    Abstract: A solid-state image pickup device capable of suppressing the generation of dark current and/or leakage current is provided. The solid-state image pickup device has a first substrate provided with a photoelectric converter on its primary face, a first wiring structure having a first bonding portion which contains a conductive material, a second substrate provided with a part of a peripheral circuit on its primary face, and a second wiring structure having a second bonding portion which contains a conductive material. In addition, the first bonding portion and the second bonding portion are bonded so that the first substrate, the first wiring structure, the second wiring structure, and the second substrate are disposed in this order. Furthermore, the conductive material of the first bonding portion and the conductive material of the second bonding portion are surrounded with diffusion preventing films.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: March 27, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Mineo Shimotsusa
  • Patent number: 9906743
    Abstract: Provided is a solid-state imaging apparatus, including pixels each including: a photoelectric conversion unit; a charge accumulation unit; a transistor including a control electrode; a waveguide; and a light-shielding portion. The waveguide includes an incident portion and an output portion, the light-shielding portion includes a first portion that covers the control electrode of the transistor and a second portion that covers a part of the photoelectric conversion unit, the output portion and the photoelectric conversion unit are arranged with an interval therebetween, the interval between the output portion and the photoelectric conversion unit is larger than an interval between a lower end of the second portion of the light-shielding portion and the photoelectric conversion unit, and the interval between the output portion and the photoelectric conversion unit is smaller than an interval between an upper end of the second portion of the light-shielding portion and the photoelectric conversion unit.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: February 27, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Mineo Shimotsusa, Masatsugu Itahashi, Masahiro Kobayashi, Kazunari Kawabata, Takeshi Ichikawa
  • Patent number: 9899449
    Abstract: A solid-state imaging device includes: a first semiconductor substrate including a photoelectric conversion element; and a second semiconductor substrate including at least a part of a peripheral circuit arranged in a main face of the second semiconductor substrate, the peripheral circuit generating a signal based on the charge of the photoelectric conversion element, a main face of the first semiconductor substrate and the main face of the second semiconductor substrate being opposed to each other with sandwiching a wiring structure therebetween; a pad to be connected to an external terminal; and a protection circuit electrically connected to the pad and to the peripheral circuit, wherein the protection circuit is arranged in the main face of the second semiconductor substrate.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: February 20, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Masahiro Kobayashi, Mineo Shimotsusa
  • Patent number: 9897482
    Abstract: A photoelectric conversion apparatus according to one aspect of the present invention includes a first substrate including a photoelectric conversion region and a surrounding region, and a second substrate including a circuit for processing a signal from the photoelectric conversion region, and overlapping the first substrate. In this case, the circuit for processing a signal from the photoelectric conversion region includes a first circuit and a second circuit with a higher drive frequency than that of the first circuit. In an orthogonal projection, the second circuit is only provided in the photoelectric conversion region.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: February 20, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Mineo Shimotsusa, Koichiro Iwata
  • Patent number: 9887227
    Abstract: A method of manufacturing a solid-state image sensor, includes forming a first isolation region of a first conductivity type in a semiconductor layer having first and second surfaces, the forming the first isolation region including first implantation for implanting ions into the semiconductor layer through the first surface, forming charge accumulation regions of a second conductivity type in the semiconductor layer, performing first annealing, forming an interconnection on a side of the first surface of the semiconductor layer after the first annealing, and forming a second isolation region of the first conductivity type in the semiconductor layer, the forming the second isolation region including second implantation for implanting ions into the semiconductor layer through the second surface. The first and second isolation regions are arranged between the adjacent charge accumulation regions.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 6, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventor: Mineo Shimotsusa
  • Patent number: 9881957
    Abstract: A photoelectric conversion device includes a first semiconductor substrate including a photoelectric conversion unit for generating a signal charge in accordance with an incident light, and a second semiconductor substrate including a signal processing unit for processing an electrical signal on the basis of the signal charge generated in the photoelectric conversion unit. The signal processing unit is situated in an orthogonal projection area from the photoelectric conversion unit to the second semiconductor substrate. A multilayer film including a plurality of insulator layers is provided between the first semiconductor substrate and the second semiconductor substrate. The thickness of the second semiconductor substrate is smaller than 500 micrometers. The thickness of the second semiconductor substrate is greater than the distance from the second semiconductor substrate and a light-receiving surface of the first semiconductor substrate.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: January 30, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Mineo Shimotsusa, Takeshi Ichikawa, Yasuhiro Sekine
  • Patent number: 9865637
    Abstract: A manufacturing method includes a first process for forming a first gate electrode for a first MOS transistor and a second gate electrode for a second MOS transistor on a substrate including a semiconductor region defined by an insulator region for element isolation, a second process for masking a portion located above the semiconductor region of the first gate electrode to introduce an impurity to a source-drain region of the first MOS transistor, and a third process for forming a first conductor member being in contact with the portion of the first gate electrode through a first hole disposed on an insulator member covering the substrate and a second conductor member being in contact with the second gate electrode through a second hole disposed on the insulator member.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: January 9, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Mineo Shimotsusa, Masatsugu Itahashi, Yusuke Onuki, Nobuaki Kakinuma, Masato Fujita
  • Publication number: 20180007300
    Abstract: A solid-state imaging device includes a first and second pixel regions. In the first pixel region, a photoelectric conversion unit, a floating diffusion region (FD), and a transferring transistor are provided. In the second pixel region, an amplifying transistor, and a resetting transistor are provided. A first element isolation portion is provided in the first pixel region, while a second element isolation portion is provided in the second pixel region. An amount of protrusion of an insulating film into a semiconductor substrate in the first element isolation portion is smaller, than that in the second element isolation portion.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Inventors: Mineo Shimotsusa, Fumihiro Inui
  • Patent number: 9787931
    Abstract: A solid-state imaging device includes a first and second pixel regions. In the first pixel region, a photoelectric conversion unit, a floating diffusion region (FD), and a transferring transistor are provided. In the second pixel region, an amplifying transistor, and a resetting transistor are provided. A first element isolation portion is provided in the first pixel region, while a second element isolation portion is provided in the second pixel region. An amount of protrusion of an insulating film into a semiconductor substrate in the first element isolation portion is smaller, than that in the second element isolation portion.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: October 10, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Mineo Shimotsusa, Fumihiro Inui
  • Publication number: 20170263658
    Abstract: A method of manufacturing a solid-state image sensor, includes forming a first isolation region of a first conductivity type in a semiconductor layer having first and second surfaces, the forming the first isolation region including first implantation for implanting ions into the semiconductor layer through the first surface, forming charge accumulation regions of a second conductivity type in the semiconductor layer, performing first annealing, forming an interconnection on a side of the first surface of the semiconductor layer after the first annealing, and forming a second isolation region of the first conductivity type in the semiconductor layer, the forming the second isolation region including second implantation for implanting ions into the semiconductor layer through the second surface. The first and second isolation regions are arranged between the adjacent charge accumulation regions.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 14, 2017
    Inventor: Mineo Shimotsusa
  • Patent number: 9716126
    Abstract: A method of manufacturing a solid-state image sensor includes forming a first element isolation and a first active region of a pixel area, and a second isolation and a second active region of a peripheral circuit area, forming a gate electrode film covering the first element isolation, the first active region, the second element isolation and the second active region, implanting an n-type impurity selectively into at least a part of the gate electrode film corresponding to the pixel area, and forming, after the implanting of the n-type impurity, a first gate electrode of the pixel area and a second gate electrode of the peripheral circuit area by patterning the gate electrode film. The part of the gate electrode film includes a portion located above a boundary between the first element isolation and the first active region.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: July 25, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Masatsugu Itahashi, Nobuaki Kakinuma, Mineo Shimotsusa, Masato Fujita, Yusuke Onuki, Takumi Ogino, Keita Torii
  • Patent number: 9704905
    Abstract: A method of manufacturing a solid-state image sensor, includes forming a first isolation region of a first conductivity type in a semiconductor layer having first and second surfaces, the forming the first isolation region including first implantation for implanting ions into the semiconductor layer through the first surface, forming charge accumulation regions of a second conductivity type in the semiconductor layer, performing first annealing, forming an interconnection on a side of the first surface of the semiconductor layer after the first annealing, and forming a second isolation region of the first conductivity type in the semiconductor layer, the forming the second isolation region including second implantation for implanting ions into the semiconductor layer through the second surface. The first and second isolation regions are arranged between the adjacent charge accumulation regions.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: July 11, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventor: Mineo Shimotsusa
  • Publication number: 20170186803
    Abstract: A solid-state image pickup device capable of suppressing the generation of dark current and/or leakage current is provided. The solid-state image pickup device has a first substrate provided with a photoelectric converter on its primary face, a first wiring structure having a first bonding portion which contains a conductive material, a second substrate provided with a part of a peripheral circuit on its primary face, and a second wiring structure having a second bonding portion which contains a conductive material. In addition, the first bonding portion and the second bonding portion are bonded so that the first substrate, the first wiring structure, the second wiring structure, and the second substrate are disposed in this order. Furthermore, the conductive material of the first bonding portion and the conductive material of the second bonding portion are surrounded with diffusion preventing films.
    Type: Application
    Filed: March 10, 2017
    Publication date: June 29, 2017
    Inventor: Mineo Shimotsusa
  • Publication number: 20170125468
    Abstract: A solid-state image pickup device includes a semiconductor substrate in which photoelectric conversion units are arranged. An insulator is disposed on the semiconductor substrate. The insulator has holes associated with the respective photoelectric conversion units. Members are arranged in the respective holes. A light-shielding member is disposed on the opposite side of one of the members from the semiconductor substrate, such that only the associated photoelectric conversion unit is shielded from light. In the solid-state image pickup device, the holes are simultaneously formed and the members are simultaneously formed.
    Type: Application
    Filed: January 6, 2017
    Publication date: May 4, 2017
    Inventors: Mineo Shimotsusa, Masahiro Kobayashi
  • Patent number: 9640581
    Abstract: A solid-state image pickup device capable of suppressing the generation of dark current and/or leakage current is provided. The solid-state image pickup device has a first substrate provided with a photoelectric converter on its primary face, a first wiring structure having a first bonding portion which contains a conductive material, a second substrate provided with a part of a peripheral circuit on its primary face, and a second wiring structure having a second bonding portion which contains a conductive material. In addition, the first bonding portion and the second bonding portion are bonded so that the first substrate, the first wiring structure, the second wiring structure, and the second substrate are disposed in this order. Furthermore, the conductive material of the first bonding portion and the conductive material of the second bonding portion are surrounded with diffusion preventing films.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: May 2, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Mineo Shimotsusa
  • Patent number: 9608033
    Abstract: A solid-state image sensor includes a pixel area and a peripheral circuit area. The pixel area includes a first MOS, and the peripheral circuit area includes a second MOS. A method includes forming a gate of the first MOS and a gate of the second MOS, forming a first insulating film to cover the gates of the first and second MOSs, etching the first insulating film in the peripheral circuit area in a state that the pixel area is masked to form a side spacer on a side face of the gate of the second MOS, etching the first insulating film in the pixel area in a state that the peripheral circuit area is masked, and forming the second insulating film to cover the gates of the first and second MOSs and the side spacers.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: March 28, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Masatsugu Itahashi, Seiichi Tamura, Nobuaki Kakinuma, Mineo Shimotsusa, Masato Fujita, Yusuke Onuki
  • Patent number: 9577003
    Abstract: A solid-state image pickup device includes a semiconductor substrate in which photoelectric conversion units are arranged. An insulator is disposed on the semiconductor substrate. The insulator has holes associated with the respective photoelectric conversion units. Members are arranged in the respective holes. A light-shielding member is disposed on the opposite side of one of the members from the semiconductor substrate, such that only the associated photoelectric conversion unit is shielded from light. In the solid-state image pickup device, the holes are simultaneously formed and the members are simultaneously formed.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: February 21, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Mineo Shimotsusa, Masahiro Kobayashi
  • Publication number: 20160360139
    Abstract: A solid-state imaging device includes a first and second pixel regions. In the first pixel region, a photoelectric conversion unit, a floating diffusion region (FD), and a transferring transistor are provided. In the second pixel region, an amplifying transistor, and a resetting transistor are provided. A first element isolation portion is provided in the first pixel region, while a second element isolation portion is provided in the second pixel region. An amount of protrusion of an insulating film into a semiconductor substrate in the first element isolation portion is smaller, than that in the second element isolation portion.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 8, 2016
    Inventors: Mineo Shimotsusa, Fumihiro Inui