Patents by Inventor Ming Chieh Huang

Ming Chieh Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150319017
    Abstract: An apparatus includes a plurality of delay elements configured to delay a respective input signal and to output a respective delayed signal. The apparatus also includes a weight generator configured to generate a plurality of tap weights based on the delayed signals. The apparatus further includes a tap controller configured to generate tap weight enabling signals corresponding to one or more of the tap weights if the corresponding tap weights are greater than a predetermined threshold value. The tap controller is also configured to generate a set of bias factors based on corresponding tap weights of the plurality of tap weights.
    Type: Application
    Filed: July 9, 2015
    Publication date: November 5, 2015
    Inventors: Ming-Chieh HUANG, Jing Jing CHEN, Chan-Hong CHERN, Tao Wen CHUNG, Chih-Chang LIN, Yuwen SWEI
  • Publication number: 20150263618
    Abstract: A voltage supply unit including a regulator unit, a voltage divider and a first current mirror. The regulator unit is configured to receive a first voltage signal and a second voltage signal, and is configured to generate a third voltage signal. The voltage divider is connected between the first current mirror and the regulator unit, and controls the second voltage signal. The first current mirror is connected to the regulator unit, an input voltage supply and the voltage divider. The first current mirror is configured to generate a first current signal and a second current signal, the second current signal is mirrored from the first current signal, the first current signal is controlled by the third voltage signal and the second current signal controls an output voltage supply signal.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 17, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chan-Hong CHERN, Tsung-Ching HUANG, Chih-Chang LIN, Ming-Chieh HUANG, Fu-Lung HSUEH
  • Patent number: 9134360
    Abstract: A circuit has a first circuit module including a first resistor and first and second transistors coupled in parallel with the first resistor. The first resistor and the first and second transistors are coupled together at a first node. An equivalent resistance across the first circuit module increases as a voltage of the first node is increased from a first voltage to a second voltage, and the equivalent resistance across the first circuit module decreases as the voltage of the first node is increased from the second voltage to a third voltage.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tao Wen Chung, Chan-Hong Chern, Ming-Chieh Huang, Chih-Chang Lin, Yuwen Swei
  • Publication number: 20150244357
    Abstract: A delay line circuit comprises a plurality of delay units configured to receive an input signal and modify the input signal to produce a first output signal. The delay line circuit also comprises a variable delay line unit that comprises an input end configured to receive the first output signal; an output end configured to output a second output signal; a first line between the input end and the output end, the first line comprising, in series, a first inverter, a second inverter, a first speed control unit, and a third inverter; a second line between the input end and the output end, the second line comprising, in series, a fourth inverter, a second speed control unit, a fifth inverter, and a sixth inverter. The delay line circuit is also configured to selectively transmit the received first output signal through one of the first line or the second line.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Chieh HUANG, Chan-Hong CHERN, Tsung-Ching HUANG, Chih-Chang LIN, Fu-Lung HSUEH
  • Publication number: 20150244258
    Abstract: In an initialization phase of a charge pump, an input signal is supplied to an input electrode of a capacitor of the charge pump and to an initialization device of the charge pump. An initialization signal is supplied to the initialization device of the charge pump. The initialization device supplies an output signal to an output electrode of the capacitor. The output signal has a high level and a low level corresponding to a high level and a low level of the input signal, the input signal and the output signal causing a charge to be accumulated in the capacitor. In a pumping operation phase following the initialization phase, the initialization signal is removed from the initialization device to place the output electrode of the capacitor in a floating state, and a pumping action is performed with the charge accumulated in the capacitor.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chan-Hong CHERN, Chih-Chang LIN, Tsung-Ching HUANG, Ming-Chieh HUANG
  • Publication number: 20150243341
    Abstract: A voltage regulator includes an amplifier, an output stage coupled with the amplifier, at least one back-bias circuit, and an output end coupled with the output stage and with the amplifier. The output stage includes at least one transistor having a bulk and a drain. The at least one back-bias circuit is coupled with the bulk of the at least one transistor. The output end is configured to be coupled with a memory array and with an output end of another voltage regulator. The back-bias circuit is configured to reduce a contention current between the voltage regulator and the other voltage regulator during a standby mode.
    Type: Application
    Filed: April 28, 2015
    Publication date: August 27, 2015
    Inventors: Ming-Chieh HUANG, Chan-Hong CHERN, Tien Chun YANG, Chih-Chang LIN, Yuwen SWEI
  • Publication number: 20150244360
    Abstract: A circuit includes a first power node configured to carry a voltage K·VDD, a second power node configured to carry a zero reference level, an output node, K P-type transistors serially coupled between the first power node and the output node, and K N-type transistors serially coupled between the second power node and the output node. Gates of the K P-type transistors are configured to receive biasing signals set at one or more voltage levels in a manner that one or more absolute values of source-gate voltages or absolute values of drain-gate voltages are equal to or less than VDD. Gates of the K N-type transistors are configured to receive biasing signals set at one or more voltage levels in a manner that one or more absolute values of gate-source voltages or gate-drain voltages are equal to or less than VDD.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chan-Hong CHERN, Tsung-Ching HUANG, Chih-Chang LIN, Ming-Chieh HUANG, Fu-Lung HSUEH
  • Patent number: 9094249
    Abstract: An apparatus comprises a plurality of delay elements connected in series. Each delay element is configured to delay a respective input signal and to output a respective delayed signal. The apparatus also comprises a weight generator configured to generate a plurality of tap weights based on the delayed signals. The apparatus further comprises a tap controller configured to (1) generate tap weight enabling signals corresponding to one or more of the tap weights based on a determination that the corresponding tap weights are greater than a predetermined threshold value, and (2) generate a set of bias factors. The apparatus additionally comprises a summer configured to output a weighted signal based on the delayed signals, the tap weight enabling signals, the tap weights, and the bias factors.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: July 28, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Chieh Huang, Jing Jing Chen, Chan-Hong Chern, Tao Wen Chung, Chih-Chang Lin, Yuwen Swei
  • Publication number: 20150145597
    Abstract: A multi-stage transimpedance amplifier (TIA) which includes a common gate amplifier configured to receive a current signal, the common gate amplifier is configured to convert the current signal into an amplified voltage signal. The multi-stage TIA further includes a capacitive degeneration amplifier configured to receive the amplified voltage signal, the capacitive degeneration amplifier is configured to equalize the amplified voltage signal to form an equalized signal. The multi-stage TIA further includes an inverter configured to receive the equalized signal, the inverter is configured to increase a signal strength of the equalized signal to form an output signal. The multi-stage TIA further includes a feedback configured to receive the output signal, wherein the feedback is connected to an input and an output of the inverter.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Ching HUANG, Chan-Hong CHERN, Ming-Chieh HUANG, Chih-Chang LIN
  • Publication number: 20150145579
    Abstract: A circuit includes a first circuit, a second circuit and a third circuit. The first circuit is configured to receive a first phase of a clock signal, a second phase of a clock signal and a first control signal. The first circuit is configured to generate a first interpolated phase of a clock signal. The second circuit is configured to receive a third phase of a clock signal, a fourth phase of a clock signal and a second control signal, and generate a second interpolated phase of a clock signal. The third circuit is configured to receive the first interpolated phase of the clock signal and the second interpolated phase of the clock signal, and generate the first control signal. The first control signal dynamically adjusts the first interpolated phase of the clock signal.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTUING COMPANY, LTD.
    Inventors: Chih-Chang LIN, Chan-Hong CHERN, Tsung-Ching HUANG, Ming-Chieh HUANG
  • Publication number: 20150131711
    Abstract: An apparatus comprises a plurality of delay elements connected in series. Each delay element is configured to delay a respective input signal and to output a respective delayed signal. The apparatus also comprises a weight generator configured to generate a plurality of tap weights based on the delayed signals. The apparatus further comprises a tap controller configured to (1) generate tap weight enabling signals corresponding to one or more of the tap weights based on a determination that the corresponding tap weights are greater than a predetermined threshold value, and (2) generate a set of bias factors. The apparatus additionally comprises a summer configured to output a weighted signal based on the delayed signals, the tap weight enabling signals, the tap weights, and the bias factors.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventors: Ming-Chieh HUANG, Jing Jing CHEN, Chan-Hong CHERN, Tao Wen CHUNG, Chih-Chang LIN, Yuwen SWEI
  • Patent number: 8971395
    Abstract: A Decision Feedback Equalizer (DFE) with programmable taps includes a summer configured to receive a DFE input signal. Delay elements are coupled to the summer. The delay elements are connected in series. Each delay element provides a respective delayed signal of an input signal to the delay element. A weight generator is configured to provide tap weights. The DFE is configured to multiply each tap weight to the respective delayed signal from the respective delay element to provide tap outputs. Each tap output is selectively enabled to be added to the summer or disabled based on a first comparison of a first threshold value and each impulse response or each tap weight corresponding to the respective tap output, where the impulse response is the DFE input signal in response to a pulse signal transmitted through a channel.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chieh Huang, Jing Jing Chen, Chan-Hong Chern, Tao Wen Chung, Chih-Chang Lin, Yuwen Swei
  • Publication number: 20150035566
    Abstract: A driver includes a first driver stage having a first T-coil structure. The first T-coil structure includes a first set of inductors each being operable to provide a first inductance. The first T-coil structure further includes a second set of inductors electrically coupled with the first set of inductors, wherein the second set of inductors each are operable to provide a second inductance.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 5, 2015
    Inventors: Ming-Chieh HUANG, Tao Wen CHUNG, Chan-Hong CHERN, Chih-Chang LIN, Yuwen SWEI, Chiang PU
  • Publication number: 20150014518
    Abstract: A transimpedance amplifier includes a first inverter having a first input node and a first output node. The first input node is configured to receive an input signal. A second inverter has a second input node and a second output node. The second input node connects to a reference voltage terminal. The first inverter and the second inverter are configured to provide a differential output voltage signal between the first output node and the second output node. A first amplifier is configured to provide feedback to the first input node and a second amplifier is configured to provide feedback to the second input node.
    Type: Application
    Filed: October 1, 2014
    Publication date: January 15, 2015
    Inventors: Tsung-Ching HUANG, Chan-Hong CHERN, Tao Wen CHUNG, Ming-Chieh HUANG, Chih-Chang LIN
  • Patent number: 8903030
    Abstract: A clock data recovery circuit (CDR) extracts bit data values from a serial bit stream without reference to a transmitter clock. A controllable oscillator produces a regenerated clock signal controlled to match the frequency and phase of transitions between bits and the serial data is sampled at an optimal phase. A phase detector generates early-or-late indication bits for clock versus data transition times, which are accumulated and applied to a second order feedback control with two distinct feedback paths for frequency and phase, combined for correcting the controllable oscillator, selecting a sub-phase and/or determining an optimal phase at which the bit stream data values are sampled. The second order filter is operated at distinct rates such that the phase correction has a latency as short as one clock cycle and the frequency correction latency occurs over plural cycles.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tao Wen Chung, Chan-Hong Chern, Ming-Chieh Huang, Chih-Chang Lin, Yuwen Swei, Tsung-Ching Huang
  • Publication number: 20140347110
    Abstract: A circuit includes a capacitive-load voltage controlled oscillator having an input configured to receive a first input signal and an output configured to output an oscillating output signal. A calibration circuit is coupled to the voltage controlled oscillator and is configured to output one or more control signals to the capacitive-load voltage controlled oscillator for adjusting a frequency of the oscillating output signal. The calibration circuit is configured to output the one or more control signals in response to a comparison of an input voltage to at least one reference voltage.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventors: Chan-Hong CHERN, Tao Wen CHUNG, Ming-Chieh HUANG, Chih-Chang LIN, Tsung-Ching HUANG, Fu-Lung HSUEH
  • Patent number: 8896352
    Abstract: A driver includes a first driver stage having at least one input node and at least one first output node. The first driver stage includes a T-coil structure that is disposed adjacent to the at least one first output node. The T-coil structure includes a first set of inductors each being operable to provide a first inductance. A second set of inductors are electrically coupled with the first set of inductors in a parallel fashion. The second set of inductors each are operable to provide a second inductance. A second driver stage is electrically coupled with the first driver stage.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: November 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chieh Huang, Tao Wen Chung, Chan-Hong Chern, Chih-Chang Lin, Yuwen Swei, Chiang Pu
  • Patent number: 8885787
    Abstract: A clock and data recovery (CDR) circuit includes an inductor-capacitor voltage controlled oscillator (LCVCO) configured to generate a clock signal with a clock frequency. The CDR circuit further includes a delay locked loop (DLL) configured to receive the clock signal from the LCVCO and generate multiple clock phases and a first charge pump configured to control the LCVCO. The CDR circuit further includes a phase detector configured to receive a data input and the multiple clock phases from the DLL, and to align a data edge of the data input and the multiple clock phases.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Chih-Chang Lin, Ming-Chieh Huang, Fu-Lung Hsueh
  • Patent number: 8884665
    Abstract: A multiple-phase clock generator includes at least one stage of dividers. A clock signal is supplied as a first stage clock input to dividers in a first stage of dividers. An N-th stage includes 2N dividers, where N is a positive integer number. Each divider in the first stage is configured to divide a first clock frequency of the first stage clock input by 2 to provide a first stage output. Each divider in the N-th stage is configured to divide an N-th clock frequency of an N-th stage clock input by 2 to provide an N-th stage output. The N-th stage outputs from the dividers in the N-th stage provide 2N-phase clock signals that are equally distributed with a same phase difference between adjacent phase clock signals.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Lin, Chan-Hong Chern, Ming-Chieh Huang, Tao Wen Chung
  • Patent number: 8878585
    Abstract: A slicer includes a first latch. The first latch includes an evaluating transistor configured to receive a first clock signal. The first latch further includes a developing transistor configured to receive a second clock signal, wherein the first clock signal is different from the second clock signal. The first latch further includes a first input transistor configured to receive a first input. The first latch further includes a second input transistor configured to receive a second input, wherein the first and second input transistors are connected with the developing transistor. The first latch further includes at least one pre-charging transistor configured to receive a third clock signal, wherein the at least one pre-charging transistor is connected to a first output node and a second output node. The slicer further includes a second latch connected to the first and second output nodes and to a third output node.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: November 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chieh Huang, Chan-Hong Chern, Tao Wen Chung, Chih-Chang Lin, Tsung-Ching Huang, Derek C. Tao