Patents by Inventor Ming-Yu Fan

Ming-Yu Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134167
    Abstract: An optical path folding element includes a main body, a light absorption film layer and a matte structure. The main body has optical surface including an incident surface, a reflective surface and an emitting surface. A light enters into the optical folding element through the incident surface. The reflective surface reflects the light so as to change a traveling direction thereof. The light exits the optical folding element through the emitting surface. The light absorbing film layer is configured to reduce reflectance and provided adjacent to at least part of the optical surface, and the light absorbing film layer is in physical contact with the main body. The matte structure is disposed adjacent to at least part of the optical surface. The matte structure provides an undulating profile on a surface of the optical path folding element, and the matte structure is formed in one-piece with the main body.
    Type: Application
    Filed: September 24, 2023
    Publication date: April 25, 2024
    Applicant: LARGAN PRECISION CO., LTD.
    Inventors: Ssu-Hsin LIU, Chen Wei FAN, Chien-Hsun WU, Wen-Yu TSAI, Ming-Ta CHOU
  • Patent number: 11250433
    Abstract: Training risk determination models based on a set of labeled data transactions. A first set of labeled data transactions that have been labeled during a review process is accessed. A first risk determination model is trained using the first set of labeled data transactions. A first risk score for data transactions of a set of unlabeled data transactions is determined using the first risk determination model. Data transactions in the set of unlabeled data transactions are newly labeled based on the first risk score. The newly labeled data transactions are added to a second set of labeled data transactions that include the first set of labeled data transactions. A second risk determination model is trained using at least the second set of labeled data transactions. A second risk score is determined for subsequently received data transactions and these data transactions are rejected or approved based on the second risk score.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: February 15, 2022
    Assignee: MICROSOFT TECHNOLOGLY LICENSING, LLC
    Inventors: Cezary A. Marcjan, Hung-Chih Yang, Jayaram NM Nanduri, Shoou-Jiun Wang, Ming-Yu Fan
  • Publication number: 20190130406
    Abstract: Training risk determination models based on a set of labeled data transactions. A first set of labeled data transactions that have been labeled during a review process is accessed. A first risk determination model is trained using the first set of labeled data transactions. A first risk score for data transactions of a set of unlabeled data transactions is determined using the first risk determination model. Data transactions in the set of unlabeled data transactions are newly labeled based on the first risk score. The newly labeled data transactions are added to a second set of labeled data transactions that include the first set of labeled data transactions. A second risk determination model is trained using at least the second set of labeled data transactions. A second risk score is determined for subsequently received data transactions and these data transactions are rejected or approved based on the second risk score.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 2, 2019
    Inventors: Cezary A. Marcjan, Hung-Chih Yang, Jayaram NM Nanduri, Shoou-Jiun Wang, Ming-Yu Fan
  • Publication number: 20190114639
    Abstract: Embodiments disclosed herein are related to computing systems and methods for detecting anomalies in a distribution of one or more attributes associated with data transactions. In the embodiments, data transactions are accessed that each include various attributes. The data transactions are grouped into a first subset associated with a first sub-type of a first attribute and a second subset including any remaining sub-types of the first attribute. Second attributes in the first and second subsets are compared to determine differences in the proportion of the second attributes between the first and second subsets, where the differences are indicative of an anomaly in an expected distribution of the second attributes. Based at least on a determination that there are differences in the proportion, subsequently accessed data transactions that are associated with attributes similar to the data transactions of the first subset are rejected or subjected to a further review process.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 18, 2019
    Inventors: Eric W. Nick, Ming-Yu Fan, Hung-Chih Yang, Shoou-Jiun Wang, Cezary A. Marcjan, Jayaram NM Nanduri
  • Patent number: 10113233
    Abstract: An apparatus and a method for controlling critical dimension (CD) of a circuit is provided. An apparatus includes a controller for receiving CD measurements at respective locations in a circuit pattern in an etched film on a first substrate and a single wafer chamber for forming a second film of the film material on a second substrate. The single wafer chamber is responsive to a signal from the controller to locally adjust a thickness of the second film based on the measured CD's. A method provides for etching a circuit pattern of a film on a first substrate, measuring CD's of the circuit pattern, adjusting a single wafer chamber to form a second film on a second semiconductor substrate based on the measured CD. The second film thickness is locally adjusted based on the measured CD's.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: October 30, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Lin Chang, Hsin-Hsien Wu, Zin-Chang Wei, Chi-Ming Yang, Chyi Shyuan Chern, Jun-Lin Yeh, Jih-Jse Lin, Jo Fei Wang, Ming-Yu Fan, Jong-I Mou
  • Publication number: 20170022611
    Abstract: An apparatus and a method for controlling critical dimension (CD) of a circuit is provided. An apparatus includes a controller for receiving CD measurements at respective locations in a circuit pattern in an etched film on a first substrate and a single wafer chamber for forming a second film of the film material on a second substrate. The single wafer chamber is responsive to a signal from the controller to locally adjust a thickness of the second film based on the measured CD's. A method provides for etching a circuit pattern of a film on a first substrate, measuring CD's of the circuit pattern, adjusting a single wafer chamber to form a second film on a second semiconductor substrate based on the measured CD. The second film thickness is locally adjusted based on the measured CD's.
    Type: Application
    Filed: April 7, 2015
    Publication date: January 26, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Lin CHANG, Hsin-Hsien WU, Zin-Chang WEI, Chi-Ming YANG, Chyi Shyuan CHERN, Jun-Lin YEH, Jih-Jse LIN, Jo Fei WANG, Ming-Yu FAN, Jong-I MOU
  • Publication number: 20150211122
    Abstract: An apparatus and a method for controlling critical dimension (CD) of a circuit is provided. An apparatus includes a controller for receiving CD measurements at respective locations in a circuit pattern in an etched film on a first substrate and a single wafer chamber for forming a second film of the film material on a second substrate. The single wafer chamber is responsive to a signal from the controller to locally adjust a thickness of the second film based on the measured CD's. A method provides for etching a circuit pattern of a film on a first substrate, measuring CD's of the circuit pattern, adjusting a single wafer chamber to form a second film on a second semiconductor substrate based on the measured CD. The second film thickness is locally adjusted based on the measured CD's.
    Type: Application
    Filed: April 7, 2015
    Publication date: July 30, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Lin CHANG, Hsin-Hsien WU, Zin-Chang WEI, Chi-Ming YANG, Chyi Shyuan CHERN, Jun-Lin YEH, Jih-Jse LIN, Jo Fei WANG, Ming-Yu FAN, Jong-I MOU
  • Patent number: 9023664
    Abstract: An apparatus and a method for controlling critical dimension (CD) of a circuit is provided. An apparatus includes a controller for receiving CD measurements at respective locations in a circuit pattern in an etched film on a first substrate and a single wafer chamber for forming a second film of the film material on a second substrate. The single wafer chamber is responsive to a signal from the controller to locally adjust a thickness of the second film based on the measured CD's. A method provides for etching a circuit pattern of a film on a first substrate, measuring CD's of the circuit pattern, adjusting a single wafer chamber to form a second film on a second semiconductor substrate based on the measured CD. The second film thickness is locally adjusted based on the measured CD's.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Lin Chang, Hsin-Hsien Wu, Zin-Chang Wei, Chi-Ming Yang, Chyi-Shyuan Chern, Jun-Lin Yeh, Jih-Jse Lin, Jo-Fei Wang, Ming-Yu Fan, Jong-I Mou
  • Patent number: 8404572
    Abstract: An apparatus includes a process chamber configured to perform an ion implantation process. A cooling platen or electrostatic chuck is provided within the process chamber. The cooling platen or electrostatic chuck is configured to support a semiconductor wafer. The cooling platen or electrostatic chuck has a plurality of temperature zones. Each temperature zone includes at least one fluid conduit within or adjacent to the cooling platen or electrostatic chuck. At least two coolant sources are provided, each fluidly coupled to a respective one of the fluid conduits and configured to supply a respectively different coolant to a respective one of the plurality of temperature zones during the ion implantation process. The coolant sources include respectively different chilling or refrigeration units.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: March 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Chun-Lin Chang, Hsin-Hsien Wu, Zin-Chang Wei, Chi-Ming Yang, Chyi-Shyuan Chern, Jun-Lin Yeh, Jih-Jse Lin, Jo-Fei Wang, Ming-Yu Fan, Jong-I Mou
  • Patent number: 8392009
    Abstract: The present disclosure provides a semiconductor manufacturing method. The method includes performing a first process to a first plurality of semiconductor wafers; determining a sampling rate to the first plurality of semiconductor wafers based on process quality; determining sampling fields and sampling points to the first plurality of semiconductor wafers; measuring a subset of the first plurality of semiconductor wafers according to the sampling rate, the sampling fields and the sampling points; modifying a second process according to the measuring; and applying the second process to a second plurality of semiconductor wafers.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: March 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wang Jo Fei, Andy Tsen, Ming-Yu Fan, Jill Wang, Jong-I Mou
  • Patent number: 8229588
    Abstract: A method of advanced process control (APC) for semiconductor fabrication is provided. The method includes providing a present wafer to be processed by a semiconductor processing tool, providing first data of previous wafers that have been processed by the semiconductor processing tool, decoupling noise from the first data to generate second data, evaluating an APC performance based on proximity of the second data to a target data, determining a control parameter based on the APC performance, and controlling the semiconductor processing tool with the control parameter to process the present wafer.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: July 24, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Andy Tsen, Chih-Wei Hsu, Ming-Yeon Hung, Ming-Yu Fan, Wang Jo Fei, Jong-I Mou
  • Patent number: 8108060
    Abstract: System and method for implementing wafer acceptance test (“WAT”) advanced process control (“APC”) are described. In one embodiment, the method comprises performing a key process on a sample number of wafers of a lot of wafers; performing a key inline measurement related to the key process to produce metrology data for the wafers; predicting WAT data from the metrology data using an inline-to-WAT model; and using the predicted WAT data to tune a WAT APC process for controlling a tuning process or a process APC process.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: January 31, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Andy Tsen, Jo Fei Wang, Po-Feng Tsai, Ming-Yu Fan, Jill Wang, Jong-I Mou, Sunny Wu
  • Patent number: 7977655
    Abstract: A method for monitoring overlay of a direct-write system. The method includes providing a substrate having a pattern formed thereon by the direct-write system, generating data associated with the substrate pattern, decomposing the data by applying a transformation matrix, and determining an overlay index based on the decomposed data, the overlay index corresponding to a variation component of the substrate pattern relative to a target pattern.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: July 12, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jo Fei Wang, Ming-Yu Fan, Jong-I Mou
  • Publication number: 20100294955
    Abstract: A method for monitoring overlay of a direct-write system. The method includes providing a substrate having a pattern formed thereon by the direct-write system, generating data associated with the substrate pattern, decomposing the data by applying a transformation matrix, and determining an overlay index based on the decomposed data, the overlay index corresponding to a variation component of the substrate pattern relative to a target pattern.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 25, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jo Fei Wang, Ming-Yu Fan, Jong-I Mou
  • Publication number: 20100292824
    Abstract: System and method for implementing wafer acceptance test (“WAT”) advanced process control (“APC”) are described. In one embodiment, the method comprises performing a key process on a sample number of wafers of a lot of wafers; performing a key inline measurement related to the key process to produce metrology data for the wafers; predicting WAT data from the metrology data using an inline-to-WAT model; and using the predicted WAT data to tune a WAT APC process for controlling a tuning process or a process APC process.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 18, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Andy Tsen, Jo Fei Wang, Po-Feng Tsai, Ming-Yu Fan, Jill Wang, Jong-I Mou, Sunny Wu
  • Publication number: 20100249974
    Abstract: The present disclosure provides a semiconductor manufacturing method. The method includes performing a first process to a first plurality of semiconductor wafers; determining a sampling rate to the first plurality of semiconductor wafers based on process quality; determining sampling fields and sampling points to the first plurality of semiconductor wafers; measuring a subset of the first plurality of semiconductor wafers according to the sampling arte, the sampling fields and the sampling points; modifying a second process according to the measuring; and applying the second process to a second plurality of semiconductor waders.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wang Jo Fei, Andy Tsen, Ming-Yu Fan, Jill Wang, Jong-I Mou
  • Publication number: 20100228370
    Abstract: A method of advanced process control (APC) for semiconductor fabrication is provided. The method includes providing a present wafer to be processed by a semiconductor processing tool, providing first data of previous wafers that have been processed by the semiconductor processing tool, decoupling noise from the first data to generate second data, evaluating an APC performance based on proximity of the second data to a target data, determining a control parameter based on the APC performance, and controlling the semiconductor processing tool with the control parameter to process the present wafer.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 9, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Andy Tsen, Chih-Wei Hsu, Ming-Yeon Hung, Ming-Yu Fan, Wang Jo Fei, Jong-I Mou
  • Publication number: 20100210041
    Abstract: An apparatus includes a process chamber configured to perform an ion implantation process. A cooling platen or electrostatic chuck is provided within the process chamber. The cooling platen or electrostatic chuck is configured to support a semiconductor wafer. The cooling platen or electrostatic chuck has a plurality of temperature zones. Each temperature zone includes at least one fluid conduit within or adjacent to the cooling platen or electrostatic chuck. At least two coolant sources are provided, each fluidly coupled to a respective one of the fluid conduits and configured to supply a respectively different coolant to a respective one of the plurality of temperature zones during the ion implantation process. The coolant sources include respectively different chilling or refrigeration units.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Lin Chang, Hsin-Hsien Wu, Zin-Chang Wei, Chi-Ming Yang, Chyi-Shyuan Chern, Jun-Lin Yeh, Jih-Jse Lin, Jo-Fei Wang, Ming-Yu Fan, Jong-I Mou
  • Patent number: 6998629
    Abstract: A reticle position detection system which detects an abnormal position of a reticle in order to prevent damage to the reticle by a reticle fork or pre-alignment unit used to orient the reticle for subsequent internalization into a process tool or other equipment. The reticle position detection system includes a laser beam generator provided on one side of the reticle and a laser beam sensor provided on the opposite side of the reticle. The laser beam generator emits a laser beam which is received by the laser beam sensor in the event that the reticle is correctly positioned for engagement by a reticle fork or pre-alignment unit.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 14, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co Ltd
    Inventor: Ming-Yu Fan
  • Publication number: 20040164256
    Abstract: A reticle position detection system which detects an abnormal position of a reticle in order to prevent damage to the reticle by a reticle fork or pre-alignment unit used to orient the reticle for subsequent internalization into a process tool or other equipment. The reticle position detection system includes a laser beam generator provided on one side of the reticle and a laser beam sensor provided on the opposite side of the reticle. The laser beam generator emits a laser beam which is received by the laser beam sensor in the event that the reticle is correctly positioned for engagement by a reticle fork or pre-alignment unit.
    Type: Application
    Filed: February 20, 2003
    Publication date: August 26, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Ming-Yu Fan