Patents by Inventor Mingtang Zhao

Mingtang Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7821697
    Abstract: An exterior reflective mirror element suitable for a vehicle includes a transparent glass substrate having a reflector and a visual indicator display disposed to the rear of the substrate. The visual indicator display may be part of a blind spot detection and display system of the vehicle wherein the visual indicator display is actuated to emit light responsive to a detection by a blind spot detection detector of the equipped vehicle of an overtaking vehicle in a side lane adjacent the side of the equipped vehicle. The visual indicator display includes at least a first indicator at a first location to the rear of the exterior reflective mirror element. A first portion of the reflector may be at least partially removed at the first location in order to establish an at least partially transmissive first portion of the exterior reflective mirror element at the first location.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: October 26, 2010
    Assignee: Donnelly Corporation
    Inventors: Desaraju V. Varaprasad, Mingtang Zhao, Craig A. Dornan, Anoop Agrawal, Pierr-Marc Allemand, Niall R. Lynam
  • Publication number: 20100220407
    Abstract: An electrochromic mirror reflective element includes a front glass substrate and a rear glass substrate having an electrochromic medium sandwiched therebetween. A curved recess is established at a second surface of the front glass substrate or a fourth surface of the rear glass substrate. A first metallic reflector is coated at the curved recess, with the reflector-coated curved recess establishing an auxiliary wide angle reflector region of the electrochromic mirror reflective element. A second metallic reflector is coated at a surface of the rear glass substrate, with the reflector-coated surface establishing a principal reflector region of the electrochromic minor reflective element. The reflective element may include a hiding layer that hides at least a portion of a component of the electrochromic mirror reflective element that is behind the hiding layer from view by the driver of a vehicle equipped with the electrochromic mirror reflective element.
    Type: Application
    Filed: May 10, 2010
    Publication date: September 2, 2010
    Applicant: DONNELLY CORPORATION
    Inventor: Mingtang Zhao
  • Patent number: 7771061
    Abstract: A display mirror assembly includes a reflective mirror element having a semitransparent mirror reflector coated onto a light-transmitting substrate. Visible light transmission through the reflective mirror element is at least 3 percent and visible light reflectance by the reflective mirror element is at least 40 percent for visible light incident upon the front side of the reflective mirror element. The reflective mirror element does not exhibit substantial spectral selectivity in its reflectance of visible light incident upon its front side. A display device is disposed to the rear of the reflective mirror element and configured so that light emitted by the display device passes through the semitransparent mirror reflector to be viewed by a viewer viewing from the front. When electrically powered, a display luminance of at least about 60 foot lamberts as measured with said display device placed behind, and emitting light through, the reflective element is achieved.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: August 10, 2010
    Assignee: Donnelly Corporation
    Inventors: Desaraju V. Varaprasad, Hamid Habibi, Ian A. McCabe, Niall R. Lynam, Mingtang Zhao, Craig A. Dornan
  • Patent number: 7748856
    Abstract: A mirror reflective element for an exterior rearview mirror assembly of a vehicle includes a mirror substrate having a front surface and a rear surface. The mirror substrate has a first reflector portion and a second reflector portion, with the first reflector portion having a principal reflector portion of the mirror reflective element. The rear surface of the mirror substrate has a curved recess established thereat, and the second curved reflector portion is established at the curved recess. The curved recess has a radius of curvature that is less than a radius of curvature of the first reflector portion, whereby the curved recess, when coated by a reflector coating, provides a wide angle auxiliary reflector portion integrally formed with the mirror reflective element.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: July 6, 2010
    Assignee: Donnelly Corporation
    Inventor: Mingtang Zhao
  • Publication number: 20100110523
    Abstract: An automotive rearview mirror assembly includes an electrochromic reflective element having a transparent electrical conductor disposed at a second surface of a first substrate and a mirror reflector disposed at a third surface of a second substrate. The mirror assembly includes electrochromic mirror dimming circuitry for controlling dimming of the electrochromic medium. The mirror assembly may include one or more features and at least one of the features may share a component with the electrochromic mirror dimming circuitry and/or share circuitry with the electrochromic mirror dimming circuitry. The mirror assembly may include a video camera and/or an on-demand display viewable through the mirror reflector by the driver of the equipped vehicle when displaying information and substantially non-viewable by the driver of the equipped vehicle when not displaying information.
    Type: Application
    Filed: January 11, 2010
    Publication date: May 6, 2010
    Applicant: DONNELLY CORPORATION
    Inventors: Desaraju V. Varaprasad, Mingtang Zhao, Craig A. Dornan, Anoop Agrawal, Pierr-Marc Allemand, Niall R. Lynam
  • Publication number: 20100053723
    Abstract: An exterior reflective mirror element suitable for a vehicle includes a transparent glass substrate having a reflector and a visual indicator display disposed to the rear of the substrate. The visual indicator display may be part of a blind spot detection and display system of the vehicle wherein the visual indicator display is actuated to emit light responsive to a detection by a blind spot detection detector of the equipped vehicle of an overtaking vehicle in a side lane adjacent the side of the equipped vehicle. The visual indicator display includes at least a first indicator at a first location to the rear of the exterior reflective mirror element. A first portion of the reflector may be at least partially removed at the first location in order to establish an at least partially transmissive first portion of the exterior reflective mirror element at the first location.
    Type: Application
    Filed: November 9, 2009
    Publication date: March 4, 2010
    Applicant: DONNELLY CORPORATION
    Inventors: Desaraju V. Varaprasad, Mingtang Zhao, Craig Allen Dornan, Anoop Agrawal, Pierr-Marc Allemand, Niall R. Lynam
  • Patent number: 7643200
    Abstract: An exterior reflective mirror element suitable for a vehicle includes a transparent glass substrate having a reflector and a visual indicator display disposed to the rear of the substrate. The visual indicator display may be part of a blind spot detection and display system of the vehicle wherein the visual indicator display is actuated to emit light responsive to a detection by a blind spot detection detector of the equipped vehicle of an overtaking vehicle in a side lane adjacent the side of the equipped vehicle. The visual indicator display includes at least a first indicator at a first location to the rear of the exterior reflective mirror element. A first portion of the reflector may be at least partially removed at the first location in order to establish an at least partially transmissive first portion of the exterior reflective mirror element at the first location.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: January 5, 2010
    Assignee: Donnelly Corp.
    Inventors: Desaraju V. Varaprasad, Mingtang Zhao, Craig A. Dornan, Anoop Agrawal, Pierr-Marc Allemand, Niall R. Lynam
  • Patent number: 7589883
    Abstract: An exterior mirror suitable for use in a vehicular exterior rearview mirror assembly includes a reflective mirror element having a light transmitting substrate with a mirror reflector having a metallic reflective layer coated thereon. A visual indicator display is disposed to the rear of the light transmitting substrate and actuated to emit light when powered. Light emitted by light sources of the display passes through the light transmitting substrate so as to be viewed by a driver of the vehicle equipped with the reflective mirror element. The mirror element has portions of the metallic reflective layer at least partially removed by laser scribing to establish at least partially light transmissive portions of the mirror reflector so that light emitted by light sources, when powered, passes through the respective at least partially light transmissive portions to be viewed by a viewer viewing from the front of the reflective mirror element.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: September 15, 2009
    Assignee: Donnelly Corporation
    Inventors: Desaraju V. Varaprasad, Mingtang Zhao, Craig A. Dornan, Anoop Agrawal, Pierr-Marc Allemand, Niall R. Lynam
  • Patent number: 7572017
    Abstract: A signal mirror system for a vehicle includes a reflective mirror element comprising a semitransparent nondichroic mirror reflector coated onto a light-transmitting substrate. The visible light transmission through the reflective mirror element is in the range of from about 1% visible light transmission to about 30% visible light transmission and the visible light reflectance is in the range from 40% visible light reflectance to 80% visible light reflectance for visible light incident upon the front side of the reflective mirror element. A turn signal display having at least one light emitting diode is disposed to the rear of the reflective mirror element and configured to emit light that light passes through the semitransparent mirror reflector to be viewed by a viewer viewing from the front of the reflective mirror element with a display luminance of at least about 30 foot lamberts.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: August 11, 2009
    Assignee: Donnelly Corporation
    Inventors: Desaraju V. Varaprasad, Hamid Habibi, Ian A. McCabe, Niall R. Lynam, Mingtang Zhao, Craig A. Dornan
  • Patent number: 7543947
    Abstract: A rearview mirror element for a motor vehicle includes a light transmitting substrate having a visible light reflecting and visible light transmitting mirror reflector disposed on a surface thereof. A display-on-demand display device is disposed behind the substrate such that light emitted by the display device when powered passes through both the light transmitting substrate and the mirror reflector. The display device exhibits, when powered during day time driving conditions, a display luminance of at least about 60 foot lamberts. When not emitting light, the disposition of the display device to the rear of the light transmitting substrate is not substantially distinguishable to the driver of the equipped vehicle when viewing the mirror element. To the rear of the light transmitting substrate is rendered substantially opaque by a light absorbing element that is disposed at least adjacent to where, and except at where, the display device is disposed therebehind.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: June 9, 2009
    Assignee: Donnelly Corporation
    Inventors: Desaraju V. Varaprasad, Hamid Habibi, Ian A. McCabe, Niall R. Lynam, Mingtang Zhao, Craig A. Dornan
  • Publication number: 20090067032
    Abstract: A vehicular signal mirror includes a reflective mirror element comprising a mirror reflector on a light-transmitting substrate. The visible light reflectance is at least about 40% for visible light incident upon the front side of the reflective mirror element. A turn signal light display and/or a blind-spot indicator light display is disposed to the rear of the reflective mirror element and configured so that the light emitted by the light display passes through the reflective mirror element to be viewed by a viewer viewing from the front of the reflective mirror element. The light display exhibits, when electrically powered and when operated in the vehicle during day time driving conditions, a display luminance of at least about 60 foot lamberts as measured with the light display placed behind, and emitting light through, the reflective mirror element.
    Type: Application
    Filed: November 10, 2008
    Publication date: March 12, 2009
    Applicant: DONNELLY CORPORATION
    Inventors: Desaraju V. Varaprasad, Hamid Habibi, Ian A. McCabe, Niall R. Lynam, Mingtang Zhao, Craig A. Dornan
  • Patent number: 7494231
    Abstract: A vehicular signal mirror includes a reflective mirror element comprising a mirror reflector on a light-transmitting substrate. The visible light reflectance is at least about 40% for visible light incident upon the front side of the reflective mirror element. A turn signal light display and/or a blind-spot indicator light display is disposed to the rear of the reflective mirror element and configured so that the light emitted by the light display passes through the reflective mirror element to be viewed by a viewer viewing from the front of the reflective mirror element. The light display exhibits, when electrically powered and when operated in the vehicle during day time driving conditions, a display luminance of at least about 30 foot lamberts as measured with the light display placed behind, and emitting light through, the reflective mirror element.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: February 24, 2009
    Assignee: Donnelly Corporation
    Inventors: Desaraju V. Varaprasad, Hamid Habibi, Ian A. McCabe, Niall R. Lynam, Mingtang Zhao, Craig A. Dornan
  • Publication number: 20080304170
    Abstract: A mirror reflective element for an exterior rearview mirror assembly of a vehicle includes a mirror substrate having a front surface and a rear surface. The mirror substrate has a first reflector portion and a second reflector portion, with the first reflector portion having a principal reflector portion of the mirror reflective element. The rear surface of the mirror substrate has a curved recess established thereat, and the second curved reflector portion is established at the curved recess. The curved recess has a radius of curvature that is less than a radius of curvature of the first reflector portion, whereby the curved recess, when coated by a reflector coating, provides a wide angle auxiliary reflector portion integrally formed with the mirror reflective element.
    Type: Application
    Filed: May 21, 2008
    Publication date: December 11, 2008
    Applicant: Donnelly Corporation
    Inventor: Mingtang Zhao
  • Publication number: 20080291522
    Abstract: An exterior reflective mirror element suitable for a vehicle includes a transparent glass substrate having a reflector and a visual indicator display disposed to the rear of the substrate. The visual indicator display may be part of a blind spot detection and display system of the vehicle wherein the visual indicator display is actuated to emit light responsive to a detection by a blind spot detection detector of the equipped vehicle of an overtaking vehicle in a side lane adjacent the side of the equipped vehicle. The visual indicator display includes at least a first indicator at a first location to the rear of the exterior reflective mirror element. A first portion of the reflector may be at least partially removed at the first location in order to establish an at least partially transmissive first portion of the exterior reflective mirror element at the first location.
    Type: Application
    Filed: April 3, 2008
    Publication date: November 27, 2008
    Applicant: DONNELLY CORPORATION
    Inventors: Desaraju V. Varaprasad, Mingtang Zhao, Craig Allen Dornan, Anoop Agrawal, Pierr-Marc Allemand, Niall R. Lynam
  • Publication number: 20080180781
    Abstract: A display mirror assembly includes a reflective mirror element having a semitransparent mirror reflector coated onto a light-transmitting substrate. Visible light transmission through the reflective mirror element is at least 3 percent and visible light reflectance by the reflective mirror element is at least 40 percent for visible light incident upon the front side of the reflective mirror element. The reflective mirror element does not exhibit substantial spectral selectivity in its reflectance of visible light incident upon its front side. A display device is disposed to the rear of the reflective mirror element and configured so that light emitted by the display device passes through the semitransparent mirror reflector to be viewed by a viewer viewing from the front. When electrically powered, a display luminance of at least about 60 foot lamberts as measured with said display device placed behind, and emitting light through, the reflective element is achieved.
    Type: Application
    Filed: April 1, 2008
    Publication date: July 31, 2008
    Applicant: DONNELLY CORPORATION
    Inventors: Desaraju V. Varaprasad, Hamid Habibi, Ian A. McCabe, Niall R. Lynam, Mingtang Zhao, Craig A. Dornan
  • Publication number: 20080094684
    Abstract: A vehicular signal mirror includes a reflective mirror element comprising a mirror reflector on a light-transmitting substrate. The visible light reflectance is at least about 40% for visible light incident upon the front side of the reflective mirror element. A turn signal light display and/or a blind-spot indicator light display is disposed to the rear of the reflective mirror element and configured so that the light emitted by the light display passes through the reflective mirror element to be viewed by a viewer viewing from the front of the reflective mirror element. The light display exhibits, when electrically powered and when operated in the vehicle during day time driving conditions, a display luminance of at least about 30 foot lamberts as measured with the light display placed behind, and emitting light through, the reflective mirror element.
    Type: Application
    Filed: December 12, 2007
    Publication date: April 24, 2008
    Applicant: Donnelly Corporation
    Inventors: Desaraju Varaprasad, Hamid Habibi, Ian McCabe, Naill Lynam, Mingtang Zhao, Craig Dornan
  • Publication number: 20080094685
    Abstract: An exterior mirror suitable for use in a vehicular exterior rearview mirror assembly includes a reflective mirror element having a light transmitting substrate with a mirror reflector having a metallic reflective layer coated thereon. A visual indicator display is disposed to the rear of the light transmitting substrate and actuated to emit light when powered. Light emitted by light sources of the display passes through the light transmitting substrate so as to be viewed by a driver of the vehicle equipped with the reflective mirror element. The mirror element has portions of the metallic reflective layer at least partially removed by laser scribing to establish at least partially light transmissive portions of the mirror reflector so that light emitted by light sources, when powered, passes through the respective at least partially light transmissive portions to be viewed by a viewer viewing from the front of the reflective mirror element.
    Type: Application
    Filed: December 17, 2007
    Publication date: April 24, 2008
    Applicant: Donnelly Corporation
    Inventors: Desaraju Varaprasad, Mingtang Zhao, Craig Dornan, Anoop Agrawal, Pierr-Marc Allemand, Niall Lynam
  • Publication number: 20070183066
    Abstract: A signal mirror system for a vehicle includes a reflective mirror element comprising a semitransparent nondichroic mirror reflector coated onto a light-transmitting substrate. The visible light transmission through the reflective mirror element is in the range of from about 1% visible light transmission to about 30% visible light transmission and the visible light reflectance is in the range from 40% visible light reflectance to 80% visible light reflectance for visible light incident upon the front side of the reflective mirror element. The reflective mirror element exhibits substantial non-spectral selectivity in its reflectance. The semitransparent nondichroic reflector comprises a metal thin film layer.
    Type: Application
    Filed: January 19, 2007
    Publication date: August 9, 2007
    Applicant: Donnelly Corporation
    Inventors: Desaraju Varaprasad, Hamid Habibi, Ian McCabe, Niall Lynam, Mingtang Zhao, Craig Dornan
  • Patent number: 7004592
    Abstract: An electrochromic rearview mirror suitable for a motor vehicle is disclosed. The mirror includes a display device disposed behind the rear substrate.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: February 28, 2006
    Assignee: Donnelly Corporation
    Inventors: Desaraju V. Varaprasad, Hamid Habibi, Ian A. McCabe, Niall R. Lynam, Mingtang Zhao, Craig A. Dornan
  • Publication number: 20060028730
    Abstract: An electrochromic rearview mirror element for a motor vehicle comprises a first substantially transparent front substrate having a first and a second surface (and with a substantially transparent conductive electrode on its second surface) and a rear substrate having a third and a fourth surface. The rear substrate is positioned in spaced-apart relationship with the front substrate and with its third surface opposing the second surface of the front substrate. A mirror reflector is disposed on the third surface and a seal is positioned toward a peripheral edge of the substrates forming a cavity therebetween. An electrochromic medium is disposed in the cavity. The mirror reflector preferably comprises a metal layer that reflects at least about 70% of visible light. A display device can be disposed behind the rear substrate.
    Type: Application
    Filed: October 6, 2005
    Publication date: February 9, 2006
    Applicant: Donnelly Corporation
    Inventors: Desaraju V. Varaprasad, Hamid Habibi, Ian A. McCabe, Niall R. Lynam, Mingtang Zhao, Craig A. Dornan