Patents by Inventor Minkyun Noh

Minkyun Noh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11749437
    Abstract: On-platform pumps provide greater flexibility and design freedom and are a key feature of organs-on-chip platforms. On-platform electromagnetic (EM) pumps have been developed for use with the organ-on-chip platforms. The EM pump uses electrical energy, which may be supplied by a battery, making the pump portable. The EM pump uses an EM actuator having a low energy consumption. The actuator's low energy consumption is achieved by a latching design which requires only a short pulse of energy to switch its state and where springs store some of the actuator kinetic energy, which is then recovered in the reverse stroke. This further reduces the energy consumption of the actuator. Also provided are injection-molded, single-use platforms with onboard diaphragm micro-pumps and various valve and pump geometries. The EM actuators easily integrate with these platforms, demonstrating pumping at a constant flowrate, no measurable temperature rise, and valve sealing against varying back-pressure.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: September 5, 2023
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Brij Mohan Bhushan, Daniel R. Rathbone, David L. Trumper, Minkyun Noh, Jun Young Yoon
  • Patent number: 11376413
    Abstract: A highly portable advanced adult and pediatric compact ECLS system is based around an integrated pump-oxygenator. The system includes a central a blood inlet and flow path extending along a general longitudinal axis of the system; a pump housing defining a pump inlet in fluid communication with the central blood flow path; an impeller rotationally received within the area of the pump inlet, wherein the impeller is magnetically supported and magnetically driven; an array of hollow fiber membranes configured for gas transfer within the system for oxygenation of blood flowing across the hollow fiber membranes, wherein the membranes include a covalently-bonded heparin-based bioactive surface, and wherein the blood flow path extends from the impeller to a position to flow perpendicular over the array of hollow fiber membranes; and a blood outlet configured to receive blood flowing past the array of hollow fiber membranes.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 5, 2022
    Assignees: ENSION INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Mark Gartner, Minkyun Noh, David L. Trumper
  • Patent number: 10833570
    Abstract: Described are homopolar bearingless slice motors which include an array arrangement of permanent magnets on stator teeth, and a magnet-free rotor having a unique surface geometry. Also described are related components of such motors. The permanent magnet arrays provide homopolar bias flux to the rotor, and salient features on the rotor surface route the bias flux toward paths desirable for force and torque generation. In an illustrative embodiment, two magnet arrays are placed at the tips of stator teeth, so as to provide the bias flux via relatively short flux paths. By modulating current through windings based upon the rotor radial and angular position measurements, the stator can levitate and rotate the rotor.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: November 10, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Minkyun Noh, David L. Trumper
  • Publication number: 20190338230
    Abstract: On-platform pumps provide greater flexibility and design freedom and are a key feature of organs-on-chip platforms. On-platform electromagnetic (EM) pumps have been developed for use with the organ-on-chip platforms. The EM pump uses electrical energy, which may be supplied by a battery, making the pump portable. The EM pump uses an EM actuator having a low energy consumption. The actuator's low energy consumption is achieved by a latching design which requires only a short pulse of energy to switch its state and where springs store some of the actuator kinetic energy, which is then recovered in the reverse stroke. This further reduces the energy consumption of the actuator. Also provided are injection-molded, single-use platforms with onboard diaphragm micro-pumps and various valve and pump geometries. The EM actuators easily integrate with these platforms, demonstrating pumping at a constant flowrate, no measurable temperature rise, and valve sealing against varying back-pressure.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Inventors: Brij Mohan Bhushan, Daniel R. Rathbone, David L. Trumper, Minkyun Noh, Jun Young Yoon
  • Publication number: 20190199186
    Abstract: Described are homopolar bearingless slice motors which include an array arrangement of permanent magnets on stator teeth, and a magnet-free rotor having a unique surface geometry. Also described are related components of such motors. The permanent magnet arrays provide homopolar bias flux to the rotor, and salient features on the rotor surface route the bias flux toward paths desirable for force and torque generation. In an illustrative embodiment, two magnet arrays are placed at the tips of stator teeth, so as to provide the bias flux via relatively short flux paths. By modulating current through windings based upon the rotor radial and angular position measurements, the stator can levitate and rotate the rotor.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 27, 2019
    Inventors: Minkyun Noh, David L. Trumper
  • Publication number: 20190125946
    Abstract: A highly portable advanced adult and pediatric compact ECLS system is based around an integrated pump-oxygenator. The system includes a central a blood inlet and flow path extending along a general longitudinal axis of the system; a pump housing defining a pump inlet in fluid communication with the central blood flow path; an impeller rotationally received within the area of the pump inlet, wherein the impeller is magnetically supported and magnetically driven; an array of hollow fiber membranes configured for gas transfer within the system for oxygenation of blood flowing across the hollow fiber membranes, wherein the membranes include a covalently-bonded heparin-based bioactive surface, and wherein the blood flow path extends from the impeller to a position to flow perpendicular over the array of hollow fiber membranes; and a blood outlet configured to receive blood flowing past the array of hollow fiber membranes.
    Type: Application
    Filed: December 14, 2018
    Publication date: May 2, 2019
    Inventors: Mark Gartner, Minkyun Noh, David L. Trumper
  • Patent number: 10177627
    Abstract: Described is a bearingless motor based upon a homopolar flux-biased magnetic bearing for force generation and a hysteresis motor for torque generation. The bearingless slice motor levitates and rotates a ring-shaped rotor made of a semi-hard magnetic material. The rotor is biased with a homopolar permanent-magnetic flux, on which 2-pole flux can be superimposed to generate suspension forces. Torque is generated by a hysteretic coupling between the rotor and a rotating multi-pole stator field.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: January 8, 2019
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Minkyun Noh, David L. Trumper
  • Publication number: 20170040868
    Abstract: Described is a bearingless motor based upon a homopolar flux-biased magnetic bearing for force generation and a hysteresis motor for torque generation. The bearingless slice motor levitates and rotates a ring-shaped rotor made of a semi-hard magnetic material. The rotor is biased with a homopolar permanent-magnetic flux, on which 2-pole flux can be superimposed to generate suspension forces. Torque is generated by a hysteretic coupling between the rotor and a rotating multi-pole stator field.
    Type: Application
    Filed: August 3, 2016
    Publication date: February 9, 2017
    Inventors: Minkyun Noh, David L. Trumper