Patents by Inventor Minsoung Rhee

Minsoung Rhee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951477
    Abstract: An example method includes connecting a flow cell to an instrument. The flow cell includes a flow channel including a manifold section having a manifold section swept volume and a detection section having a detection section swept volume. A ratio of the detection section swept volume to manifold section swept volume is at least 10 to 1. A first reagent is pumped through the flow channel. A first chemical reaction is performed between the first reagent and analytes positioned in the detection section. A subsequent reagent is pumped through the flow channel to flush out the remaining reagent. A concentration of at least 99.95 percent of reagent positioned in the detection section is the subsequent reagent, after pumping a total volume of the subsequent reagent through the flow channel that is equal to or less than 2.5 times a total swept volume of the manifold section plus the detection section.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Illumina, Inc.
    Inventors: Sz-Chin Lin, Jay Taylor, Minsoung Rhee, Jennifer Foley, Wesley Cox-Muranami, Cyril Delattre, Tarun Khurana, Paul Crivelli
  • Publication number: 20230285963
    Abstract: An apparatus includes one or more valves adapted to be coupled to corresponding reagent reservoirs and a flow cell interface adapted to be coupled to a flow cell. The apparatus includes a sample cartridge interface having one or more ports and adapted to be coupled to a sample cartridge carrying a sample of interest. The sample cartridge interface positioned downstream of the flow cell interface. The apparatus includes a pump adapted to load a channel of the flow cell with the sample of interest via the flow cell interface associated with an outlet of the flow cell and a corresponding port of the sample cartridge interface.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 14, 2023
    Inventors: Bradley Drews, Reto Schoch, Tarun Kumar Khurana, Minsoung Rhee
  • Publication number: 20220323955
    Abstract: An example method includes connecting a flow cell to an instrument. The flow cell includes a flow channel including a manifold section having a manifold section swept volume and a detection section having a detection section swept volume. A ratio of the detection section swept volume to manifold section swept volume is at least 10 to 1. A first reagent is pumped through the flow channel. A first chemical reaction is performed between the first reagent and analytes positioned in the detection section. A subsequent reagent is pumped through the flow channel to flush out the remaining reagent. A concentration of at least 99.95 percent of reagent positioned in the detection section is the subsequent reagent, after pumping a total volume of the subsequent reagent through the flow channel that is equal to or less than 2.5 times a total swept volume of the manifold section plus the detection section.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Applicant: Illumina, Inc.
    Inventors: Sz-Chin LIN, Jay TAYLOR, Minsoung RHEE, Jennifer FOLEY, Wesley COX-MURANAMI, Cyril DELATTRE, Tarun KHURANA, Paul CRIVELLI
  • Patent number: 11376584
    Abstract: In one example, a flow cell includes a plurality of inlet ports sized to receive a flow of reagent from one of a plurality of reagents into the flow cell. An outlet port of the flow cell is sized to pass each flow of reagent out of the flow cell. A flow channel of the flow cell is positioned between, and in fluid communication with, each inlet port and the outlet port. The flow channel includes a manifold section and a detection section. The manifold section has a plurality of manifold branches in fluid communication with a common line, wherein each branch is connected to one of each inlet port. The detection section is in fluid communication with the common line and the outlet port. The detection section is operable to perform a plurality of different chemical reactions between the plurality of reagents and analytes positioned in the detection section.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: July 5, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Sz-Chin Lin, Jay Taylor, Minsoung Rhee, Jennifer Foley, Wesley Cox-Muranami, Cyril Delattre, Tarun Khurana, Paul Crivelli
  • Publication number: 20210078001
    Abstract: An apparatus includes one or more valves adapted to be coupled to corresponding reagent reservoirs and a flow cell interface adapted to be coupled to a flow cell. The apparatus includes a sample cartridge interface having one or more ports and adapted to be coupled to a sample cartridge carrying a sample of interest. The sample cartridge interface positioned downstream of the flow cell interface. The apparatus includes a pump adapted to load a channel of the flow cell with the sample of interest via the flow cell interface associated with an outlet of the flow cell and a corresponding port of the sample cartridge interface.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 18, 2021
    Inventors: Bradley Drews, Reto Schoch, Tarun Khurana, Minsoung Rhee
  • Publication number: 20210080479
    Abstract: An apparatus includes a flow cell interface adapted to be coupled to a flow cell having a plurality of channels and a pump manifold assembly carrying pump valves and pumps and including pump-channel fluidic lines, pump fluidic lines, and a shared fluidic line. The pump valves and the pumps are operable to individually control fluid flow through each channel of the plurality of channels of the flow cell via the corresponding pump-channel fluidic lines. Each pump valve being coupled to a corresponding pump-channel fluidic line, a corresponding pump fluidic line, and the shared fluidic line and being movable between a first position fluidically coupling a corresponding channel, a corresponding pump-channel fluidic line, and a corresponding pump fluidic line and a second position fluidically coupling a corresponding pump fluidic line, the shared fluidic line, and a waste reservoir. Each pump coupled to a corresponding pump fluidic line.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 18, 2021
    Inventors: Bradley Drews, Reto Schoch, Tarun Khurana, Minsoung Rhee
  • Publication number: 20200376482
    Abstract: Two-phase flushing systems and methods. An example method includes moving a valve to a first position to fluidly connect a first reagent reservoir containing a first reagent to a flow cell and flowing the first reagent from the first reagent reservoir to the flow cell to perform a biochemical reaction. The method includes moving the valve to a second position to fluidly connect a gas to the flow cell and flowing gas into the flow cell to expel at least a portion of the first reagent from the biochemical reaction from the flow cell. The method includes moving the valve to a third position to fluidly connect a buffer reagent reservoir containing a buffer reagent to the flow cell and flowing the buffer reagent into the flow cell.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Inventors: Nicholas Watson, Wesley A. Cox-Muranami, Cyril Delattre, Minsoung Rhee
  • Publication number: 20190351413
    Abstract: An instrument includes a reagent management system. The reagent management system includes a plurality of reagent wells, each reagent well operable to contain a reagent of a plurality of reagents positioned therein. The reagent management system is operable to select a flow of reagent from one of the plurality of reagents. A flexible connection includes a laminate stack and includes a first flexible channel in fluid communication with the reagent management system. The first flexible channel is operable to route the flow of reagent therethrough. A flow cell includes a flow channel in fluid communication with the first flexible channel. The flow channel is operable to route the flow of reagent over analytes positioned in the flow channel. The flexible connection enables the flow cell to be moved by the instrument relative to a fixed reference point in the instrument.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 21, 2019
    Applicant: Illumina, Inc.
    Inventors: Cyril DELATTRE, Minsoung RHEE, Jeffrey LIU, Wesley COX-MURANAMI, Paul CRIVELLI, Jennifer FOLEY, Darren SEGALE, Jay TAYLOR, Matthew HAGE, Philip PAIK, Erik ALLEGOREN, David HERTZOG, Alex MOROZ-SMIETANA, Xiaoxiao MA, Tsukasa TAKAHASHI, Brandon WESTERBERG
  • Publication number: 20190336970
    Abstract: In one example, a flow cell includes a plurality of inlet ports sized to receive a flow of reagent from one of a plurality of reagents into the flow cell. An outlet port of the flow cell is sized to pass each flow of reagent out of the flow cell. A flow channel of the flow cell is positioned between, and in fluid communication with, each inlet port and the outlet port. The flow channel includes a manifold section and a detection section. The manifold section has a plurality of manifold branches in fluid communication with a common line, wherein each branch is connected to one of each inlet port. The detection section is in fluid communication with the common line and the outlet port. The detection section is operable to perform a plurality of different chemical reactions between the plurality of reagents and analytes positioned in the detection section.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Applicant: Illumina, Inc.
    Inventors: Sz-Chin LIN, Jay TAYLOR, Minsoung RHEE, Jennifer FOLEY, Wesley COX-MURANAMI, Cyril DELATTRE, Tarun KHURANA, Paul CRIVELLI
  • Patent number: 8573259
    Abstract: A modular microfluidic system comprising a base substrate, a plurality of microfluidic assembly blocks, and an adhesive component is provided. Each individual microfluidic assembly block defines a channel and has a sidewall defining an aperture into the channel. When the plurality of microfluidic assembly blocks are arranged on the base substrate, the aperture into the channel of one microfluidic assembly block aligns with the aperture of another microfluidic assembly block with the channels thereof connected along a plane parallel to the base substrate thereby forming a channel network defined by the plurality of microfluidic assembly blocks. The subject invention also provides a method of assembling a microfluidic device. The method comprising the steps of providing the base substrate, providing the plurality of microfluidic assembly blocks, and arranging the plurality of microfluidic assembly blocks on the base substrate.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: November 5, 2013
    Assignee: The Regents of the University of Michigan
    Inventors: Mark A. Burns, Minsoung Rhee, Sean M. Langelier, Brian N. Johnson
  • Publication number: 20100258211
    Abstract: A modular microfluidic system comprising a base substrate, a plurality of microfluidic assembly blocks, and an adhesive component is provided. Each individual microfluidic assembly block defines a channel and has a sidewall defining an aperture into the channel. When the plurality of microfluidic assembly blocks are arranged on the base substrate, the aperture into the channel of one microfluidic assembly block aligns with the aperture of another microfluidic assembly block with the channels thereof connected along a plane parallel to the base substrate thereby forming a channel network defined by the plurality of microfluidic assembly blocks. The subject invention also provides a method of assembling a microfluidic device. The method comprising the steps of providing the base substrate, providing the plurality of microfluidic assembly blocks, and arranging the plurality of microfluidic assembly blocks on the base substrate.
    Type: Application
    Filed: March 25, 2010
    Publication date: October 14, 2010
    Inventors: Mark A. Burns, Minsoung Rhee, Sean M. Langelier, Brian N. Johnson