Patents by Inventor Mitchell L. Gilbert

Mitchell L. Gilbert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11813803
    Abstract: A method of joining overlapping thermoplastic geomembrane components in which a first thermoplastic geomembrane component and a second thermoplastic geomembrane component are positioned in overlapping relationship between a pair of complementary molding surfaces, with one or more of the complementary molding surfaces being defined by an electrically conductive metal susceptor. Heat is generated in the metal susceptor and transferred by thermal conduction from the metal susceptor to overlapping portions of the first and second thermoplastic geomembrane components to locally melt and coalesce a portion or more of the thermoplastic material of the first thermoplastic geomembrane component and a portion or more of the thermoplastic material of the second thermoplastic geomembrane component. The molten thermoplastic material of the first and second thermoplastic geomembrane components forms a zone of coalesced thermoplastic material that, upon cooling, forms a solid weld joint.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: November 14, 2023
    Assignee: HOLCIM SOLUTIONS AND PRODUCTS US, LLC
    Inventors: Mitchell L. Gilbert, Crint A. LaBrosse
  • Patent number: 11597160
    Abstract: A method of joining overlapping thermoplastic roofing membrane components in which a first thermoplastic roofing membrane component and a second roofing membrane component are positioned in overlapping relationship between a pair of complementary molding surfaces. Heat is generated in a metal substrate and transferred by thermal conduction from the metal substrate to overlapping portions of the first and second thermoplastic roofing membrane components to locally melt and coalesce a portion or more of the thermoplastic material of the first thermoplastic roofing membrane component and a portion or more of the thermoplastic material of the second thermoplastic roofing membrane component. The molten thermoplastic material of the first and second thermoplastic roofing membrane components forms a zone of coalesced thermoplastic material that, upon cooling, forms a solid weld joint.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: March 7, 2023
    Assignee: CRITICAL POINT CORPORATION
    Inventors: Mitchell L. Gilbert, Crint A. LaBrosse
  • Publication number: 20220234302
    Abstract: A method of joining overlapping thermoplastic roofing membrane components in which a first thermoplastic roofing membrane component and a second roofing membrane component are positioned in overlapping relationship between a pair of complementary molding surfaces. Heat is generated in a metal substrate and transferred by thermal conduction from the metal substrate to overlapping portions of the first and second thermoplastic roofing membrane components to locally melt and coalesce a portion or more of the thermoplastic material of the first thermoplastic roofing membrane component and a portion or more of the thermoplastic material of the second thermoplastic roofing membrane component. The molten thermoplastic material of the first and second thermoplastic roofing membrane components forms a zone of coalesced thermoplastic material that, upon cooling, forms a solid weld joint.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: Mitchell L. Gilbert, Crint A. LaBrosse
  • Publication number: 20220227065
    Abstract: A method of joining overlapping thermoplastic geomembrane components in which a first thermoplastic geomembrane component and a second thermoplastic geomembrane component are positioned in overlapping relationship between a pair of complementary molding surfaces, with one or more of the complementary molding surfaces being defined by an electrically conductive metal susceptor. Heat is generated in the metal susceptor and transferred by thermal conduction from the metal susceptor to overlapping portions of the first and second thermoplastic geomembrane components to locally melt and coalesce a portion or more of the thermoplastic material of the first thermoplastic geomembrane component and a portion or more of the thermoplastic material of the second thermoplastic geomembrane component. The molten thermoplastic material of the first and second thermoplastic geomembrane components forms a zone of coalesced thermoplastic material that, upon cooling, forms a solid weld joint.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 21, 2022
    Inventors: Mitchell L. Gilbert, Crint A. LaBrosse
  • Patent number: 11331863
    Abstract: A method of joining overlapping thermoplastic membrane components in which a first thermoplastic membrane component and a second thermoplastic membrane component are positioned in overlapping relationship between a pair of complementary molding surfaces, with at least one of the complementary molding surfaces being defined by an electrically conductive metal susceptor. Heat is generated in the metal susceptor and transferred by thermal conduction from the metal susceptor to overlapping portions of the first and second thermoplastic membrane components to locally melt and coalesce at least a portion of the thermoplastic material of the first thermoplastic membrane component and at least a portion of the thermoplastic material of the second thermoplastic membrane component.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: May 17, 2022
    Assignee: CRITICAL POINT CORPORATION
    Inventors: Mitchell L. Gilbert, Crint A. LaBrosse
  • Publication number: 20200223153
    Abstract: A method of joining overlapping thermoplastic membrane components in which a first thermoplastic membrane component and a second thermoplastic membrane component are positioned in overlapping relationship between a pair of complementary molding surfaces, with at least one of the complementary molding surfaces being defined by an electrically conductive metal susceptor. Heat is generated in the metal susceptor and transferred by thermal conduction from the metal susceptor to overlapping portions of the first and second thermoplastic membrane components to locally melt and coalesce at least a portion of the thermoplastic material of the first thermoplastic membrane component and at least a portion of the thermoplastic material of the second thermoplastic membrane component.
    Type: Application
    Filed: January 10, 2020
    Publication date: July 16, 2020
    Inventors: Mitchell L. Gilbert, Crint A. LaBrosse