Patents by Inventor Mitsuaki Iwashita

Mitsuaki Iwashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150140209
    Abstract: A pre-treatment method for plating can form a plating layer having sufficient adhesivity on an inner surface of a recess and on a surface of a substrate at an outside of the recess even when the recess has a high aspect ratio. The pre-treatment method for plating includes a preparation process of preparing the substrate having the recess; a first coupling layer forming process of forming a first coupling layer 21a at least on the inner surface of the recess of the substrate by using a first coupling agent; and a second coupling layer forming process of forming a second coupling layer 21b at least on the surface of the substrate at the outside of the recess by using a second coupling agent after the first coupling layer forming process.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 21, 2015
    Inventors: Takashi Tanaka, Yuichiro Inatomi, Kazutoshi Iwai, Mitsuaki Iwashita
  • Publication number: 20150096490
    Abstract: An apparatus for a plating process includes: an outer chamber; an inner chamber covered by the outer chamber; a rotatable holding mechanism configured to hold a substrate horizontally and installed in the inner chamber; a fluid supply unit configured to supply a plating solution to a preset position on the substrate; a gas supply device configured to generate a nonreactive gas and control a temperature of the nonreactive gas; a gas supply hole configured to supply the nonreactive gas into the outer chamber and provided in a top surface of the outer chamber; a plurality of gas inlet openings provided at a sidewall of the inner chamber and spaced apart at equal distances; and a rectifying plate disposed above the substrate and below the plurality of gas inlet openings inside the inner chamber, the rectifying plate having a plurality of rectifying holes uniformly disposed in the rectifying plate.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Takashi Tanaka, Yusuke Saito, Mitsuaki Iwashita
  • Publication number: 20150099355
    Abstract: A plating apparatus 20 includes a substrate holding device 110 configured to hold and rotate the substrate 2; a first discharge device 30 configured to discharge a plating liquid toward the substrate 2 held on the substrate holding device 110; and a top plate 21 that is provided above the substrate 2 and has an opening 22. The first discharge device 30 includes a first discharge unit 33 configured to discharge the plating liquid toward the substrate 2, and the first discharge unit 33 is configured to be moved between a discharge position where the plating liquid is discharged and a standby position where the plating liquid is not discharged. Further, the first discharge unit 33 is configured to be overlapped with the opening 22 of the top plate 21 at the discharge position.
    Type: Application
    Filed: February 22, 2013
    Publication date: April 9, 2015
    Inventors: Yuichiro Inatomi, Takashi Tanaka, Nobutaka Mizutani, Yusuke Saito, Mitsuaki Iwashita
  • Patent number: 8999432
    Abstract: A cap metal forming method capable of obtaining a uniform film thickness on the entire surface of a substrate is provided. A method for forming a cap metal on a processing surface of a substrate provided with two or more regions having different water-repellent properties, includes: holding the substrate horizontally by a rotatable holding mechanism installed in an inner chamber; supplying a gas between the inner chamber and an outer chamber covering the inner chamber via a gas supply hole provided in a top surface of the outer chamber; forming a pressure gradient between the inner chamber and the outer chamber; and supplying a plating solution to a preset position on the processing surface of the substrate after a pressure of the gas inside the inner chamber reaches a preset value so as to form the cap metal on at least one of the regions.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: April 7, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Tanaka, Yusuke Saito, Mitsuaki Iwashita
  • Publication number: 20150079785
    Abstract: A plating method can improve adhesivity with a substrate. The plating method of performing a plating process on the substrate includes forming a vacuum-deposited layer 2A on the substrate 2 by performing a vacuum deposition process on the substrate 2; forming an adhesion layer 21 and a catalyst adsorption layer 22 on the vacuum-deposited layer 2A of the substrate 2; and forming a plating layer stacked body 23 having a first plating layer 23a and a second plating layer 23b which function as a barrier film on the catalyst adsorption layer 22 of the substrate 2. By forming the vacuum-deposited layer 2A, a surface of the substrate 2 can be smoothened, so that the vacuum-deposited layer 2A serving as an underlying layer can improve the adhesivity.
    Type: Application
    Filed: February 22, 2013
    Publication date: March 19, 2015
    Inventors: Nobutaka Mizutani, Takashi Tanaka, Yuichiro Inatomi, Yusuke Saito, Mitsuaki Iwashita
  • Publication number: 20150030774
    Abstract: A plating method can improve adhesivity with an underlying layer. The plating method of performing a plating process on a substrate includes forming a first plating layer 23a serving as a barrier film on a substrate 2; baking the first plating layer 23a; forming a second plating layer 23b serving as a barrier film; and baking the second plating layer 23b. A plating layer stacked body 23 serving as a barrier film is formed of the first plating layer 23a and the second plating layer 23b.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 29, 2015
    Applicant: Tokyo Electron Limited
    Inventors: Takashi Tanaka, Yuichiro Inatomi, Nobutaka Mizutani, Yusuke Saito, Mitsuaki Iwashita
  • Patent number: 8937014
    Abstract: A liquid treatment apparatus of continuously performing a plating process on multiple substrates includes a temperature controlling container for accommodating a plating liquid; a temperature controller for controlling a temperature of the plating liquid in the temperature controlling container; a holding unit for holding the substrates one by one at a preset position; a nozzle having a supply hole through which the temperature-controlled plating liquid in the temperature controlling container is discharged to a processing surface of the substrate; a pushing unit for pushing the temperature-controlled plating liquid in the temperature controlling container toward the supply hole of the nozzle; and a supply control unit for controlling a timing when the plating liquid is pushed by the pushing unit. The temperature controller controls the temperature of the plating liquid in the temperature controlling container based on the timing when the plating liquid is pushed by the pushing unit.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: January 20, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Tanaka, Yusuke Saito, Mitsuaki Iwashita
  • Publication number: 20140356539
    Abstract: A plating apparatus 20 includes a substrate holding device 110 configured to hold a substrate W; a discharging device 21 configured to discharge a plating liquid 35 toward the substrate W held by the substrate holding device 110; and a plating liquid supplying device 30 connected to the discharging device 21 and configured to supply the plating liquid 35 to the discharging device 21. A gas supplying device 170 is configured to heat a heating gas G having a higher specific heat capacity than air and supply the heated heating gas G toward the substrate W held by the substrate holding device 110. Further, a controller 160 is configured to control at least the discharging device 21, the plating liquid supplying device 30, and the gas supplying device 170.
    Type: Application
    Filed: November 12, 2012
    Publication date: December 4, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Yuichiro Inatomi, Takashi Tanaka, Mitsuaki Iwashita
  • Publication number: 20140302242
    Abstract: A plating apparatus 1 can perform plating processes by supplying plating liquids onto a surface of a substrate 2. The plating apparatus 1 includes a substrate rotating holder configured to hold and rotate the substrate 2; plating liquid supply units 29 and 30 configured to supply different kinds of plating liquids onto the surface of the substrate 2; a plating liquid drain unit 31 configured to drain out the plating liquids dispersed from the substrate 2 depending on the kinds of the plating liquids; and a controller 32 configured to control the substrate rotating holder 25, the plating liquid supply units 29 and 30, the plating liquid drain unit 31. While the substrate 2 is held and rotated, the plating processes are performed on the surface of the substrate 2 in sequence by supplying the different kinds of the plating liquids onto the surface of the substrate 2.
    Type: Application
    Filed: August 24, 2011
    Publication date: October 9, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Takashi Tanaka, Yusuke Saito, Mitsuaki Iwashita, Takayuki Toshima
  • Publication number: 20140250714
    Abstract: According to one embodiment, a supercritical drying method for a semiconductor substrate, comprises introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method further comprises performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
    Type: Application
    Filed: May 21, 2014
    Publication date: September 11, 2014
    Inventors: Linan JI, Hidekazu Hayashi, Hiroshi Tomita, Hisashi Okuchi, Yohei Sato, Takayuki Toshima, Mitsuaki Iwashita, Kazayuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii
  • Patent number: 8771429
    Abstract: According to one embodiment, a supercritical drying method for a semiconductor substrate, comprises introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method further comprises performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 8, 2014
    Assignees: Kabushiki Kaisha Toshiba, Tokyo Electron Limited
    Inventors: Linan Ji, Hidekazu Hayashi, Hiroshi Tomita, Hisashi Okuchi, Yohei Sato, Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii
  • Patent number: 8770138
    Abstract: A plated film having a uniform film thickness is formed on a surface of a substrate. A semiconductor manufacturing apparatus includes: a holding mechanism for holding a substrate rotatably; a nozzle for supplying a processing solution for performing a plating process on a processing target surface of the substrate; a substrate rotating mechanism for rotating the substrate held by the holding mechanism in a direction along the processing target surface; a nozzle driving mechanism for moving the nozzle in a direction along the processing target surface at a position facing the processing target surface of the substrate held by the holding mechanism; and a control unit for controlling the supply of the processing solution by the nozzle and the movement of the nozzle by the nozzle driving mechanism.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: July 8, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Kenichi Hara, Mitsuaki Iwashita, Takashi Tanaka, Takayuki Toshima, Takehiko Orii
  • Publication number: 20140148006
    Abstract: A liquid treatment apparatus of continuously performing a plating process on multiple substrates includes a temperature controlling container for accommodating a plating liquid; a temperature controller for controlling a temperature of the plating liquid in the temperature controlling container; a holding unit for holding the substrates one by one at a preset position; a nozzle having a supply hole through which the temperature-controlled plating liquid in the temperature controlling container is discharged to a processing surface of the substrate; a pushing unit for pushing the temperature-controlled plating liquid in the temperature controlling container toward the supply hole of the nozzle; and a supply control unit for controlling a timing when the plating liquid is pushed by the pushing unit. The temperature controller controls the temperature of the plating liquid in the temperature controlling container based on the timing when the plating liquid is pushed by the pushing unit.
    Type: Application
    Filed: August 31, 2011
    Publication date: May 29, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Takashi Tanaka, Yusuke Saito, Mitsuaki Iwashita
  • Publication number: 20140134345
    Abstract: A plating apparatus of performing a plating process by supplying a plating liquid onto a substrate includes a substrate holding/rotating device configured to hold and rotate the substrate; a discharging device configured to discharge the plating liquid toward the substrate; a plating liquid supplying device configured to supply the plating liquid to the discharging device; and a controller configured to control the discharging device and the plating liquid supplying device. Further, the discharging device includes a first nozzle having a discharge opening, and a second nozzle having a discharge opening configured to be positioned closer to a central portion of the substrate than the discharge opening of the first nozzle. Furthermore, the plating liquid supplying device is configured to set a temperature of the plating liquid supplied to the first nozzle to be higher than a temperature of the plating liquid supplied to the second nozzle.
    Type: Application
    Filed: June 4, 2012
    Publication date: May 15, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yuichiro Inatomi, Takashi Tanaka, Mitsuaki Iwashita
  • Publication number: 20140127410
    Abstract: A liquid displacement is performed by supplying a plating liquid onto a substrate 2 while rotating the substrate 2 at a first rotational speed in a state that a pre-treatment liquid remains on a surface of the substrate 2 (liquid displacement process (block S305)). Then, an initial film is formed on the substrate 2 by stopping the rotation of the substrate 2 or by rotating the substrate 2 at a second rotational speed while continuously supplying the plating liquid onto the substrate 2 (incubation process (block S306)). Thereafter, a plating film is grown by rotating the substrate 2 at a third rotational speed while continuously supplying the plating liquid onto the substrate 2 (plating film growing process (block S307)). Here, the first rotational speed is higher than the third rotational speed, and the third rotational speed is higher than the second rotational speed.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 8, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Nobutaka Mizutani, Takashi Tanaka, Mitsuaki Iwashita
  • Publication number: 20140120264
    Abstract: A plating apparatus 20 has a substrate holding/rotating device 110 configured to hold and rotate a substrate 2 and a plating liquid supplying device 30 configured to supply a plating liquid 35 onto the substrate 2. The plating liquid supplying device 30 has a supply tank 31 configured to store therein the plating liquid 35 to be supplied onto the substrate 2, a discharge nozzle 32 configured to discharge the plating liquid 35 onto the substrate 2 and a plating liquid supplying line 33 through which the plating liquid 35 within the supply tank 31 is supplied into the discharge nozzle 32. Further, an ammonia gas storage unit 170 is connected to the supply tank 31, and a concentration of an ammonia component within the plating liquid 35 stored in the supply tank 31 can be maintained within a preset target range.
    Type: Application
    Filed: June 7, 2012
    Publication date: May 1, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yuichiro Inatomi, Takashi Tanaka, Osamu Kuroda, Mitsuaki Iwashita, Yusuke Saito
  • Patent number: 8691497
    Abstract: A developing treatment method includes: a treatment solution supplying step of supplying a treatment solution made by diluting a hydrophobizing agent hydrophobizing a resist pattern with hydrofluoroether onto a substrate on which a rinse solution has been supplied after development of the resist pattern; a hydrophobic treatment stabilizing step of stabilizing a hydrophobic treatment of the resist pattern with the supply of the treatment solution stopped and rotation of the substrate almost stopped; and a treatment solution removing step of removing the treatment solution from a top of the substrate on which the treatment solution has been supplied. The hydrophobizing agent is trimethylsilyldimethyl-amine.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: April 8, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Yuichiro Inatomi, Mitsuaki Iwashita
  • Publication number: 20130302525
    Abstract: A plating apparatus includes a substrate holding/rotating device that holds/rotates a substrate; and a plating liquid supplying device that supplies a plating liquid onto the substrate. The plating liquid supplying device includes a supply tank that stores the plating liquid; a discharge nozzle that discharges the plating liquid onto the substrate; and a plating liquid supplying line through which the plating liquid of the supply tank is supplied into the discharge nozzle. Further, a first heating device is provided at either one of the supply tank and the plating liquid supplying line of the plating liquid supplying device, and heats the plating liquid to a first temperature. Furthermore, a second heating device is provided at the plating liquid supplying line between the first heating device and the discharge nozzle, and heats the plating liquid to a second temperature equal to or higher than the first temperature.
    Type: Application
    Filed: January 13, 2012
    Publication date: November 14, 2013
    Applicant: Tokyo Electron Limited
    Inventors: Takashi Tanaka, Yusuke Saito, Mitsuaki Iwashita, Takayuki Toshima
  • Patent number: 8465596
    Abstract: Disclosed is a supercritical processing apparatus and a supercritical processing method for suppressing the pattern collapse or the injection of material constituting a processing liquid into a substrate. A processing chamber receives a substrate subjected to a processing with supercritical fluid, and a liquid supply unit supplies a processing liquid including a fluorine compound to the processing chamber. A liquid discharge unit discharges the supercritical fluid from the processing chamber, a pyrolysis ingredient removing unit removes an ingredient facilitating the pyrolysis of a liquid from the processing chamber or from the liquid supplied from the liquid supply unit, and a to heating unit heats the processing liquid including a fluorine compound of hydrofluoro ether or hydrofluoro carbon.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: June 18, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Hidekazu Okamoto, Hideo Namatsu
  • Patent number: 8383522
    Abstract: There is provided a micro pattern forming method including forming a thin film on a substrate; forming a film serving as a mask when processing the thin film; processing the film serving as a mask into a pattern including lines having a preset pitch; trimming the pattern including the lines; and forming an oxide film on the pattern including the lines and on the thin film by alternately supplying a source gas and an activated oxygen species. Here, the process of trimming the pattern and the process of forming an oxide film are consecutively performed in a film forming apparatus configured to form the oxide film.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: February 26, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Shigeru Nakajima, Kazuhide Hasebe, Pao-Hwa Chou, Mitsuaki Iwashita, Reiji Niino