Patents by Inventor Mitsuhiro Inazumi

Mitsuhiro Inazumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150202775
    Abstract: A robot controller includes a force control unit that outputs a correction value of a target track of a robot based on a detected sensor value acquired from a force sensor, a target value output unit that obtains a target value by performing correction processing on the target track based on the correction value and outputs the obtained target value, and a robot control unit that performs feedback control of the robot based on the target value. The force control unit includes an impedance processor that obtains a solution of a differential equation in force control as the correction value before the conversion processing, and a nonlinear convertor that obtains the correction value after the conversion processing by performing nonlinear conversion processing on the correction value before the conversion processing acquired from the impedance processor and outputs the obtained correction value after the conversion processing.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Inventor: Mitsuhiro INAZUMI
  • Patent number: 9050721
    Abstract: A robot controller includes a force control unit that outputs a correction value of a target track of a robot based on a detected sensor value acquired from a force sensor, a target value output unit that obtains a target value by performing correction processing on the target track based on the correction value and outputs the obtained target value, and a robot control unit that performs feedback control of the robot based on the target value. Further, the force control unit performs first force control when an external force direction indicated by the detected sensor value is a first direction, and performs second force control different from the first force control when the external force direction is a second direction opposite to the first direction.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: June 9, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi
  • Publication number: 20150120047
    Abstract: A control device includes a reception unit that receives first operation information and second operation information different from the first operation information; and a process unit that instructs a robot to execute operations based on the first operation information and the second operation information using a plurality of captured images of an imaged target object, the images being captured multiple times while the robot moves from a first posture to a second posture different from the first posture.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventors: Masaki MOTOYOSHI, Kenji ONDA, Hiroyuki KAWADA, Mitsuhiro INAZUMI
  • Patent number: 9020642
    Abstract: A robot controller includes a force control unit that outputs a correction value of a target track of a robot based on a detected sensor value acquired from a force sensor, a target value output unit that obtains a target value by performing correction processing on the target track based on the correction value and outputs the obtained target value, and a robot control unit that performs feedback control of the robot based on the target value. The force control unit includes an impedance processor that obtains a solution of a differential equation in force control as the correction value before the conversion processing, and a nonlinear convertor that obtains the correction value after the conversion processing by performing nonlinear conversion processing on the correction value before the conversion processing acquired from the impedance processor and outputs the obtained correction value after the conversion processing.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: April 28, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi
  • Publication number: 20150112487
    Abstract: A robot control system includes a force control unit configured to output a correction value of a target track of a robot on the basis of sensor information acquired from a force sensor, a target-value output unit configured to apply correction processing based on the correction value to the target track to calculate a target value and output the calculated target value, and a robot control unit configured to perform feedback control of the robot on the basis of the target value. The force control unit includes a digital filter unit. The force control unit applies digital filter processing by the digital filter unit to the sensor information to calculate a solution of an ordinary differential equation in force control and outputs the correction value on the basis of the calculated solution.
    Type: Application
    Filed: January 6, 2015
    Publication date: April 23, 2015
    Inventor: Mitsuhiro INAZUMI
  • Publication number: 20150105907
    Abstract: A robot includes a control unit that controls a movable unit of the robot to move an endpoint of the movable unit closer to a target position, and an image acquisition unit that acquires a target image as an image containing the end point when the end point is in the target position, and a current image as an image containing the end point when the end point is in a current position. The control unit controls movement of the movable unit based on the current image and the target image and output from a force detection unit that detects a force acting on the movable unit.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 16, 2015
    Inventors: Seiji AISO, Hiroshi HASEGAWA, Mitsuhiro INAZUMI, Nobuhiro KARITO
  • Patent number: 8971569
    Abstract: A marker processing method includes: (a) binarizing a shot image; (b) labeling one or more constituents of the image detected based on the image binarized in step (a); (c) obtaining a region centroid of each of the constituents corresponding to the respective labels processed in step (b); (d) obtaining a degree of overlap of the region centroids of the constituents corresponding respectively to the labels, obtained in step (c); and (e) detecting a marker based on the degree of overlap of the region centroids obtained in step (d).
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: March 3, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi
  • Patent number: 8958914
    Abstract: A robot control system includes a force control unit configured to output a correction value of a target track of a robot on the basis of sensor information acquired from a force sensor, a target-value output unit configured to apply correction processing based on the correction value to the target track to calculate a target value and output the calculated target value, and a robot control unit configured to perform feedback control of the robot on the basis of the target value. The force control unit includes a digital filter unit. The force control unit applies digital filter processing by the digital filter unit to the sensor information to calculate a solution of an ordinary differential equation in force control and outputs the correction value on the basis of the calculated solution.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: February 17, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi
  • Publication number: 20140334714
    Abstract: A collision detection system includes a processing section, a drawing section, and a depth buffer. Depth information of an object is set to the depth buffer as depth map information. The drawing section performs a first drawing process of performing a depth test, and drawing a primitive surface on a reverse side when viewed from a predetermined viewpoint out of primitive surfaces constituting a collision detection target object with reference to the depth buffer. Further, the drawing section performs a second drawing process of drawing the primitive surface on the reverse side when viewed from a predetermined viewpoint out of the primitive surfaces constituting the collision detection target object without performing the depth test. The processing section determines whether or not the collision detection target object collides with the object on the target side based on the result of the first drawing process and the second drawing process.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventor: Mitsuhiro INAZUMI
  • Patent number: 8824776
    Abstract: A collision detection system includes a processing section, a drawing section, and a depth buffer. Depth information of an object is set to the depth buffer as depth map information. The drawing section performs a first drawing process of performing a depth test, and drawing a primitive surface on a reverse side when viewed from a predetermined viewpoint out of primitive surfaces constituting a collision detection target object with reference to the depth buffer. Further, the drawing section performs a second drawing process of drawing the primitive surface on the reverse side when viewed from a predetermined viewpoint out of the primitive surfaces constituting the collision detection target object without performing the depth test. The processing section determines whether or not the collision detection target object collides with the object on the target side based on the result of the first drawing process and the second drawing process.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: September 2, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi
  • Publication number: 20140231521
    Abstract: A marker processing method includes: (a) binarizing a shot image; (b) labeling one or more constituents of the image detected based on the image binarized in step (a); (c) obtaining a region centroid of each of the constituents corresponding to the respective labels processed in step (b); (d) obtaining a degree of overlap of the region centroids of the constituents corresponding respectively to the labels, obtained in step (c); and (e) detecting a marker based on the degree of overlap of the region centroids obtained in step (d).
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: Seiko Epson Corporation
    Inventor: Mitsuhiro INAZUMI
  • Patent number: 8666141
    Abstract: A robot system includes a robot having a movable section, an image capture unit provided on the movable section, an output unit that allows the image capture unit to capture a target object and a reference mark and outputs a captured image in which the reference mark is imaged as a locus image, an extraction unit that extracts the locus image from the captured image, an image acquisition unit that performs image transformation on the basis of the extracted locus image by using the point spread function so as to acquire an image after the transformation from the captured image, a computation unit that computes a position of the target object on the basis of the acquired image, and a control unit that controls the robot so as to move the movable section toward the target object in accordance with the computed position.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: March 4, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi
  • Publication number: 20140025205
    Abstract: A control system includes a force sensor that has a mechanical mechanism (e.g., an end effector) and N (N is an integer equal to or more than two) triaxial force sensor units, acquires unit output values to which values resulting from the mechanical mechanism have been added from the respective triaxial force sensor units of the N triaxial force sensor units, and outputs force sense values based on the unit output values, a force sense value corrector that corrects the force sense values based on the force sense values output by the force sensor, and a controller that performs control of mechanical equipment (e.g., a robot) including the mechanical mechanism based on the force sense values corrected in the force sense value corrector.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 23, 2014
    Inventor: Mitsuhiro Inazumi
  • Publication number: 20140025203
    Abstract: A collision detection system includes a memory unit that stores first collision detection data corresponding to a first object and second collision detection data corresponding to a second object as collision detection data of objects, and a processing unit that performs a collision determination between the first object and the second object in the world coordinate system based on the first collision detection data and the second collision detection data. The memory unit stores representative point data obtained by discretization of depth map data of the objects as seen from a predetermined viewpoint in model coordinate systems of the objects using cubic areas set in the model coordinate systems as the collision detection data.
    Type: Application
    Filed: June 19, 2013
    Publication date: January 23, 2014
    Inventor: Mitsuhiro Inazumi
  • Publication number: 20130313330
    Abstract: A marker processing method includes: (a) binarizing a shot image; (b) labeling one or more constituents of the image detected based on the image binarized in step (a); (c) obtaining a region centroid of each of the constituents corresponding to the respective labels processed in step (b); (d) obtaining a degree of overlap of the region centroids of the constituents corresponding respectively to the labels, obtained in step (c); and (e) detecting a marker based on the degree of overlap of the region centroids obtained in step (d).
    Type: Application
    Filed: August 6, 2013
    Publication date: November 28, 2013
    Applicant: Seiko Epson Corporation
    Inventor: Mitsuhiro INAZUMI
  • Patent number: 8526668
    Abstract: A marker processing method includes: (a) binarizing a shot image; (b) labeling one or more constituents of the image detected based on the image binarized in step (a); (c) obtaining a region centroid of each of the constituents corresponding to the respective labels processed in step (b); (d) obtaining a degree of overlap of the region centroids of the constituents corresponding respectively to the labels, obtained in step (c); and (e) detecting a marker based on the degree of overlap of the region centroids obtained in step (d).
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: September 3, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi
  • Patent number: 8315455
    Abstract: A robot system includes a robot having a movable section, an image capture unit provided on the movable section, an output unit that allows the image capture unit to capture a target object and a reference mark and outputs a captured image in which the reference mark is imaged as a locus image, an extraction unit that extracts the locus image from the captured image, an image acquisition unit that performs image transformation on the basis of the extracted locus image by using the point spread function so as to acquire an image after the transformation from the captured image, a computation unit that computes a position of the target object on the basis of the acquired image, and a control unit that controls the robot so as to move the movable section toward the target object in accordance with the computed position.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: November 20, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi
  • Publication number: 20120269422
    Abstract: A collision detection system includes a processing section, a drawing section, and a depth buffer. Depth information of an object is set to the depth buffer as depth map information. The drawing section performs a first drawing process of performing a depth test, and drawing a primitive surface on a reverse side when viewed from a predetermined viewpoint out of primitive surfaces constituting a collision detection target object with reference to the depth buffer. Further, the drawing section performs a second drawing process of drawing the primitive surface on the reverse side when viewed from a predetermined viewpoint out of the primitive surfaces constituting the collision detection target object without performing the depth test. The processing section determines whether or not the collision detection target object collides with the object on the target side based on the result of the first drawing process and the second drawing process.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 25, 2012
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Mitsuhiro INAZUMI
  • Patent number: 7999957
    Abstract: An input position setting method of setting an input position for an instruction position by an instruction section on the basis of a pickup image data obtained by picking up an image of a display area when an operator instructs a predetermined position of the display area to be displayed by an image display device by the use of the instruction section, includes acquiring an image area corresponding to the instruction section as an instruction image area from the pickup image data; detecting a position existing on a contour of the instruction image area, which is remotest from a reference position set in the instruction image area, as a remotest point and setting the input position on the basis of the remotest point; and generating input position setting progress information to show the operator the progress of setting the input position and superimposing the input position setting progress information on the image data to be displayed by the image display device.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: August 16, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi
  • Patent number: 7944421
    Abstract: An image display system includes an image data processor that processes image data, an image display device that displays an image based on the image data processed by the image data processor, and a transmission path that allows bi-directional data communication between the image data processor and the image display device. The image display device includes an image processing program storing unit that stores an image processing program including characteristics correction data corresponding to the image display device, an image processing program transmitting unit responsive to a transmission request for an image processing program received from the image data processor through the transmission path for transmitting the image processing program stored in the image processing program storing unit through the transmission path, and an image display unit that displays an image based on the processed image data received from the image data processor through the transmission path.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: May 17, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Mitsuhiro Inazumi