Patents by Inventor Mitsunori Watabe

Mitsunori Watabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11484868
    Abstract: In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and/or zirconium and/or hafnium. The framework-substituted USY zeolite has an average crystallite size from 5 ?m to 50 ?m. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: November 1, 2022
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11484869
    Abstract: The present disclosure relates to a process for the hydrodealkylation of aromatic rich hydrocarbon streams to produce benzene, toluene and mixed xylenes (BTX), with high selectivity towards high value xylenes. The process uses catalysts containing a framework-substituted zirconium and/or titanium and/or hafnium-modified ultra-stable Y (USY) type zeolite.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: November 1, 2022
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center, Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11420192
    Abstract: In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium. The framework-substituted USY zeolite comprises at least one rare earth element. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: August 23, 2022
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Publication number: 20220176357
    Abstract: The present disclosure relates to a process for the hydrodealkylation of aromatic rich hydrocarbon streams to produce benzene, toluene and mixed xylenes (BTX), with high selectivity towards high value xylenes. The process uses catalysts containing a framework-substituted zirconium and/or titanium and/or hafnium-modified ultra-stable Y (USY) type zeolite.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 9, 2022
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11332678
    Abstract: Methods for processing paraffinic naphtha include contacting a paraffinic naphtha feedstock with a catalyst system in a dehydrogenation reactor. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite to produce a dehydrogenated product stream. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite. The framework-substituted USY-type zeolite has a modified USY framework. The modified USY framework includes a USY aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the USY aluminosilicate framework with substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof. A dehydrogenation catalyst for dehydrogenating a paraffinic naphtha includes the framework-substituted ultra-stable Y (USY)-type zeolite.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 17, 2022
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Ali H. Alshareef, Mitsunori Watabe, Koji Uchida
  • Patent number: 11305264
    Abstract: A method including subjecting an ultra-stable Y-type zeolite having a low silica-to-alumina molar ratio (SAR), such as in a range of 3 to 6, to acid treatment and heteroatom incorporation contemporaneously to give a framework-modified ultra-stable Y-type zeolite.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: April 19, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Koji Uchida, Tomoyasu Kagawa, Mitsunori Watabe
  • Publication number: 20220097031
    Abstract: In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and/or zirconium and/or hafnium. The framework-substituted USY zeolite has an average crystallite size from 5 ?m to 50 ?m. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11274068
    Abstract: Methods for interconverting olefins in an olefin-rich hydrocarbon stream include contacting the olefin-rich hydrocarbon stream with a catalyst system in an olefin interconversion unit to produce an interconverted effluent comprising ethylene and propylene. The contacting may be conducted at a reaction temperature from 450° C. to 750° C., a reaction pressure from 1 bar to 5 bar, and a residence time from 0.5 seconds to 1000 seconds. The catalyst system includes a framework-substituted beta zeolite. The framework-substituted beta zeolite has a *BEA aluminosilicate framework that has been modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: March 15, 2022
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Publication number: 20220032273
    Abstract: In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium. The framework-substituted USY zeolite comprises at least one rare earth element. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 3, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Publication number: 20220025276
    Abstract: Methods for processing paraffinic naphtha include contacting a paraffinic naphtha feedstock with a catalyst system in a dehydrogenation reactor. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite to produce a dehydrogenated product stream. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite. The framework-substituted USY-type zeolite has a modified USY framework. The modified USY framework includes a USY aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the USY aluminosilicate framework with substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof. A dehydrogenation catalyst for dehydrogenating a paraffinic naphtha includes the framework-substituted ultra-stable Y (USY)-type zeolite.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Ali H. Alshareef, Mitsunori Watabe, Koji Uchida
  • Publication number: 20220024839
    Abstract: Methods for interconverting olefins in an olefin-rich hydrocarbon stream include contacting the olefin-rich hydrocarbon stream with a catalyst system in an olefin interconversion unit to produce an interconverted effluent comprising ethylene and propylene. The contacting may be conducted at a reaction temperature from 450° C. to 750° C., a reaction pressure from 1 bar to 5 bar, and a residence time from 0.5 seconds to 1000 seconds. The catalyst system includes a framework-substituted beta zeolite. The framework-substituted beta zeolite has a *BEA aluminosilicate framework that has been modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Publication number: 20220008908
    Abstract: A method for producing a hydrocracking catalyst includes preparing a framework substituted Y-type zeolite, preparing a binder, co-mulling the framework substituted Y-type zeolite, the binder, and one or more hydrogenative metal components to form a catalyst precursor, and calcining the catalyst precursor to generate the hydrocracking catalyst. The framework substituted Y-type zeolite is prepared by calcining a Y-type zeolite at 500° C. to 700° C. to form a calcined Y-type zeolite. Further, the framework substituted Y-type zeolite is prepared by forming a suspension containing the calcined Y-type zeolite, the suspension having a liquid to solid mass ratio of 5 to 15, adding acid to adjust the pH of the suspension to less than 2.0, adding and mixing one or more of a zirconium compound, a hafnium compound, or a titanium compound to the suspension, and neutralizing the pH of the suspension to obtain the framework substituted Y-type zeolite.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 13, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11167266
    Abstract: Provided is a hydrodesulfurization catalyst for hydrocarbon oil, the catalyst comprising: an inorganic oxide carrier comprising Si, Ti and Al; and at least one metal component, carried on the inorganic oxide carrier, being selected from the group consisting of group 6 elements, group 8 elements, group 9 elements and group 10 elements, wherein the content of Al in the inorganic oxide carrier is 50% by mass or higher in terms of Al2O3; the content of Si therein is 1.0 to 10% by mass in terms of SiO2; and the content of Ti therein is 12 to 28% by mass in terms of TiO2; and in the inorganic oxide carrier, the absorption edge wavelength of an absorption peak from Ti is 364 nm or shorter as measured by ultraviolet spectroscopy.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: November 9, 2021
    Assignees: ENEOS CORPORATION, JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Tomohisa Hirano, Masanori Yoshida, Hiroyuki Seki, Tomoyasu Kagawa, Mitsunori Watabe
  • Patent number: 11154845
    Abstract: In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative metal component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium and at least one beta zeolite also having a framework substituted with titanium and zirconium. A method of using such a catalyst in a hydrocracking process is also disclosed.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: October 26, 2021
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11142703
    Abstract: Methods for cracking a hydrocarbon oil include contacting the hydrocarbon oil with a catalyst system in a fluidized catalytic cracking unit to produce light olefins and gasoline fuel. The catalyst system includes a FCC base catalyst and a catalyst additive. The FCC base catalyst includes a Y-zeolite. The catalyst additive includes a framework-substituted *BEA-type zeolite. The framework-substituted *BEA-type zeolite has a modified *BEA framework. The modified *BEA framework is a *BEA aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms selected from titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof. The FCC base catalyst may include a framework-substituted ultra-stable Y (USY)-zeolite as the Y-zeolite.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: October 12, 2021
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11098256
    Abstract: A process is provided for improving cold flow properties of distillates, the process comprises the step of contacting a hydrocarbon feedstock with a framework-substituted ultra-stable Y (USY)-type zeolite in which a portion of aluminum atoms constituting a zeolite framework thereof is substituted with zirconium atoms and/or titanium and/or hafnium atoms, thereby producing a dewaxed distillate product.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 24, 2021
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center, Petroleum
    Inventors: Omer Refa Koseoglu, Mitsunori Watabe, Tomoyasu Kagawa, Koji Uchida
  • Patent number: 11078431
    Abstract: The present disclosure relates to a process for the deolefinization of hydrocarbon streams through an aromatic alkylation reaction by olefins, using a catalyst containing a framework-substituted zirconium and/or titanium and/or hafnium-modified ultra-stable Y (USY) type zeolite.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: August 3, 2021
    Assignees: Saudi Arabian Oil Company, JGC CATALYSTS AND CHEMICALS LTD., JAPAN COOPERATION CENTER, PETROLEUM
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Tomoyasu Kagawa, Koji Uchida
  • Publication number: 20210207042
    Abstract: A process is provided for improving cold flow properties of distillates, the process comprises the step of contacting a hydrocarbon feedstock with a framework-substituted ultra-stable Y (USY)-type zeolite in which a portion of aluminum atoms constituting a zeolite framework thereof is substituted with zirconium atoms and/or titanium and/or hafnium atoms, thereby producing a dewaxed distillate product.
    Type: Application
    Filed: January 8, 2020
    Publication date: July 8, 2021
    Inventors: Omer Refa Koseoglu, Mitsunori Watabe, Tomoyasu Kagawa, Koji Uchida
  • Publication number: 20210179949
    Abstract: The present disclosure relates to a process for the deolefinization of hydrocarbon streams through an aromatic alkylation reaction by olefins, using a catalyst containing a framework-substituted zirconium and/or titanium and/or hafnium-modified ultra-stable Y (USY) type zeolite.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 17, 2021
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Tomoyasu Kagawa, Koji Uchida
  • Publication number: 20210121853
    Abstract: Provided is a hydrodesulfurization catalyst for hydrocarbon oil, the catalyst comprising: an inorganic oxide carrier comprising Si, Ti and Al; and at least one metal component, carried on the inorganic oxide carrier, being selected from the group consisting of group 6 elements, group 8 elements, group 9 elements and group 10 elements, wherein the content of Al in the inorganic oxide carrier is 50% by mass or higher in terms of Al2O3; the content of Si therein is 1.0 to 10% by mass in terms of SiO2; and the content of Ti therein is 12 to 28% by mass in terms of TiO2; and in the inorganic oxide carrier, the absorption edge wavelength of an absorption peak from Ti is 364 nm or shorter as measured by ultraviolet spectroscopy.
    Type: Application
    Filed: March 9, 2018
    Publication date: April 29, 2021
    Applicants: JXTG Nippon Oil & Energy Corporation, JGC Catalysts and Chemicals Ltd.
    Inventors: Tomohisa HIRANO, Masanori YOSHIDA, Hiroyuki SEKI, Tomoyasu KAGAWA, Mitsunori WATABE