Patents by Inventor Mitsuru Nagai

Mitsuru Nagai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090197171
    Abstract: An electric storage device 10 has an electrode laminate unit 12 including positive electrodes 14, negative electrodes 15 and a lithium electrode 16 provided at the outermost part of the electrode laminate unit 12. The lithium electrode 16 has a lithium-electrode current collector 26 welded to a negative-electrode current collector 22 and a lithium unit 27 sandwiched between the lithium-electrode current collector 26 and the negative electrode 15. The lithium unit 27 is composed of a lithium holding plate 27a that is in contact with the lithium-electrode current collector 26, and a lithium ion source 27b that is provided to the lithium holding plate 27a. The lithium ion source 27b is not mounted on the lithium-electrode current collector 26, but only the lithium-electrode current collector 26 is laminated and welded, whereby the damage of the lithium ion source 27b is prevented, and the manufacturing operation is simplified.
    Type: Application
    Filed: February 2, 2009
    Publication date: August 6, 2009
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kunio Nakazato, Mitsuru Nagai, Nobuo Ando
  • Publication number: 20090154064
    Abstract: A lithium ion capacitor including a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution. The positive electrode active material is capable of reversibly supporting lithium ions and/or anions, the negative electrode active material is capable of reversibly supporting lithium ions and anions, and the potentials of the positive electrode and the negative electrode are at most 2.0 V after the positive electrode and the negative electrode are short-circuited. The positive electrode and the negative electrode are alternately laminated with a separator interposed therebetween to constitute an electrode unit, the cell is constituted by at least two such electrode units, lithium metal is disposed between the electrode units, and lithium ions are preliminarily supported by the negative electrode and/or the positive electrode by electrochemical contact of the lithium metal with the negative electrode and/or the positive electrode.
    Type: Application
    Filed: October 19, 2005
    Publication date: June 18, 2009
    Inventors: Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Atsuro Shirakami, Kohei Matsui, Yukinori Hato
  • Publication number: 20090097189
    Abstract: A lithium ion capacitor having high energy density, high output density, high capacity and high safety is provided. A lithium ion capacitor comprising a positive electrode 1 made of a material capable of being reversibly doped with lithium ions and/or anions, a negative electrode 2 made of a material capable of being reversively doped with lithium ions, and an aprotic organic solution of a lithium salt as an electrolytic solution, wherein the positive electrode 1 and the negative electrode 2 are laminated or wound with a separator interposed between them, the area of the positive electrode 1 is smaller than the area of the negative electrode 2, and the face of the positive electrode 1 is substantially covered by the face of the negative electrode 2 when they are laminated or wound.
    Type: Application
    Filed: July 28, 2006
    Publication date: April 16, 2009
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Mitsuru Nagai, Hiromoto Taguchi, Kohei Matsui, Risa Takahata, Kenji Kojima, Nobuo Ando, Yukinori Hato, Osamu Hatozaki
  • Publication number: 20090027831
    Abstract: It is to provide a lithium ion capacitor having a high energy density, a high output density, a large capacity and high safety. A lithium ion capacitor comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein a positive electrode active material is a material capable of reversibly supporting lithium ions and anions, a negative electrode active material is a material capable of reversibly supporting lithium ions, and the potentials of the positive electrode and the negative electrode are at most 2.
    Type: Application
    Filed: October 19, 2005
    Publication date: January 29, 2009
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Atsuro Shirakami, Kohei Matsui, Yukinori Hato
  • Publication number: 20080156295
    Abstract: A fuel feed apparatus is provided for supplying high-pressure fuel to a common rail of an accumulator fuel injection system. The accumulator fuel injection system includes an injector for injecting high-pressure fuel accumulated in the common rail into a combustion chamber of an internal combustion engine. The fuel feed apparatus includes a high-pressure pump for press-feeding fuel to the common rail, and a feed pump for pumping fuel from a fuel tank to the high-pressure pump. A fuel filter is provided downstream of the feed pump for filtering fuel pumped from the feed pump. A return passage is provided for returning fuel from a downstream of the feed pump to an upstream of the feed pump. A return flow control unit is provided for controlling fuel retuning through the return passage.
    Type: Application
    Filed: December 7, 2007
    Publication date: July 3, 2008
    Applicant: DENSO CORPORATION
    Inventors: Masashi Suzuki, Hiroyuki Shimai, Mitsuru Nagai
  • Publication number: 20080055819
    Abstract: A lithium-ion capacitor excellent in durability, which has high energy density and high capacity retention ratio when the capacitor is charged and discharged at a high load, is disclosed. The lithium-ion capacitor includes a positive electrode, a negative electrode and an aprotic organic solvent of a lithium salt as an electrolyte solution. In the lithium-ion capacitor, a positive electrode active material allows lithium ions and/or anions to be doped thereinto and de-doped therefrom, and a negative electrode active material allows lithium ions to be doped thereinto and de-doped therefrom. At least one of the negative electrode and the positive electrode is pre-doped with lithium ions so that after the positive electrode and the negative electrode are shortcircuited, a potential of the positive electrode is 2 V (relative to Li/Li+) or lower. A thickness of a positive electrode layer of the positive electrode is within a range from 18 to 108 ?m.
    Type: Application
    Filed: August 31, 2007
    Publication date: March 6, 2008
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Hiromoto Taguchi, Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Yukinori Hatou
  • Patent number: 6971857
    Abstract: A fuel injection pump prevents the uninterrupted supply of fuel through an orifice to a cam chamber. An orifice inlet is formed on the same plane as a wall surface of a discharge fuel chamber. As a result, foreign substances, which are carried with the flow of the fuel to the vicinity of the orifice inlet, will fall downward in the discharge fuel chamber to a location away from the orifice inlet thereby preventing the foreign substances from residing in the vicinity of the orifice inlet, as occurs in the case of a conventional fuel injection pump. Specifically, since the foreign substances residing in the vicinity of the orifice inlet can be removed at each engine stop, the amount of foreign substances collected in the vicinity of the orifice inlet can be prevented from increasing during engine operation.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: December 6, 2005
    Assignee: Denso Corporation
    Inventor: Mitsuru Nagai
  • Patent number: 6961981
    Abstract: The invention concerns a piezoelectric resonator piece of a piezoelectric resonator having electrode patterns for forming exciting electrodes each of which is composed of an under a metal layer. Each of the electrode patterns for forming conduction electrodes is composed of the under metal layer except the curved or bent portions of the sides of the piezoelectric resonator piece and each of the electrode patterns in these portions are composed of the under metal layer and a gold electrode layer. It is thus possible to provide a piezoelectric resonator in which, even when noble metal layers are partially removed for increasing adhesion of surface protecting films, exciting electrodes are not brought into an open state between the upper side and the lower side of a piezoelectric resonator piece.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: November 8, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Mitsuru Nagai, Yoshiharu Kasuga
  • Publication number: 20040055127
    Abstract: The invention concerns a piezoelectric resonator piece of a piezoelectric resonator having electrode patterns for forming exciting electrodes each of which is composed of an under a metal layer. Each of the electrode patterns for forming conduction electrodes is composed of the under metal layer except the curved or bent portions of the sides of the piezoelectric resonator piece and each of the electrode patterns in these portions are composed of the under metal layer and a gold electrode layer. It is thus possible to provide a piezoelectric resonator in which, even when noble metal layers are partially removed for increasing adhesion of surface protecting films, exciting electrodes are not brought into an open state between the upper side and the lower side of a piezoelectric resonator piece.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 25, 2004
    Applicant: Seiko Epson Corporation
    Inventors: Mitsuru Nagai, Yoshiharu Kasuga
  • Publication number: 20030228230
    Abstract: A fuel injection pump prevents the uninterrupted supply of fuel through an orifice to a cam chamber. An orifice inlet is formed on the same plane as a wall surface of a discharge fuel chamber. As a result, foreign substances, which are carried with the flow of the fuel to the vicinity of the orifice inlet, will fall downward in the discharge fuel chamber to a location away from the orifice inlet thereby preventing the foreign substances from residing in the vicinity of the orifice inlet, as occurs in the case of a conventional fuel injection pump. Specifically, since the foreign substances residing in the vicinity of the orifice inlet can be removed at each engine stop, the amount of foreign substances collected in the vicinity of the orifice inlet can be prevented from increasing during engine operation.
    Type: Application
    Filed: May 30, 2003
    Publication date: December 11, 2003
    Inventor: Mitsuru Nagai
  • Patent number: 6661162
    Abstract: The invention concerns a piezoelectric resonator piece of a piezoelectric resonator having electrode patterns for forming exciting electrodes each of which is composed of an under a metal layer. Each of the electrode patterns for forming conduction electrodes is composed of the under metal layer except the curved or bent portions of the sides of the piezoelectric resonator piece and each of the electrode patterns in these portions are composed of the under metal layer and a gold electrode layer. It is thus possible to provide a piezoelectric resonator in which, even when noble metal layers are partially removed for increasing adhesion of surface protecting films, exciting electrodes are not brought into an open state between the upper side and the lower side of a piezoelectric resonator piece.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: December 9, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Mitsuru Nagai, Yoshiharu Kasuga
  • Patent number: 6545392
    Abstract: A package structure for a piezoelectric resonator includes a base which has a shape of flat box and made of an insulating material, and a thin lid bonded to the upper side of the base. A tuning fork type quartz crystal resonator piece is mounted at its one end, that is its base end, on electrode pads provided on the mounting surface in a cantilever manner using conductive adhesive so that it is parallel to the mounting surface, and hermetically sealed in a package with the lid engaged therewith. Either one or both of the mounting surface of the base and the inner surface of the lid has a recess formed at the location adjacent to the free end of a tuning fork type quartz crystal resonator piece so that the free end does not touch the inside surfaces of the packages when the quartz crystal resonator piece is largely dislocated on external impact.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: April 8, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Osamu Kawauchi, Hisashi Mikoshiba, Mitsuru Nagai
  • Publication number: 20010022488
    Abstract: A package structure for a piezoelectric resonator includes a base which has a shape of flat box and made of an insulating material, and a thin lid bonded to the upper side of the base. A tuning fork type quartz crystal resonator piece is mounted at its one end, that is its base end, on electrode pads provided on the mounting surface in a cantilever manner using conductive adhesive so that it is parallel to the mounting surface, and hermetically sealed in a package with the lid engaged therewith. Either one or both of the mounting surface of the base and the inner surface of the lid has a recess formed at the location adjacent to the free end of a tuning fork type quartz crystal resonator piece so that the free end does not touch the inside surfaces of the packages when the quartz crystal resonator piece is largely dislocated on external impact.
    Type: Application
    Filed: February 13, 2001
    Publication date: September 20, 2001
    Inventors: Osamu Kawauchi, Hisashi Mikoshiba, Mitsuru Nagai
  • Patent number: 5607236
    Abstract: A quartz oscillator temperature sensor which measures temperature based on the change in resonance or oscillation frequency of a quartz oscillator with the change in temperature the oscillator can be constructed by cutting a piece of quartz from a wafer with a thickness of about 80 to 150 .mu.m by rotating the plane of the crystal defined by the electrical and mechanical axes 15.degree. to 25.degree. about the electrical axis and then forming the wafer into a quartz tuning fork. The tuning fork is housed in a case sealed with a stem and coupled to electrical leads with heat resistent solder formed with more than about 90 wt % Pb and less than 10% Sn. The area within the case should be at a substantially high vacuum.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: March 4, 1997
    Assignee: Seiko Epson Corporation
    Inventors: Michiaki Takagi, Mitsuru Nagai
  • Patent number: 5325574
    Abstract: A quartz oscillator temperature sensor which measures temperature based on the change in resonance or oscillation frequency of a quartz oscillator with the change in temperature of the oscillator can be constructed by cutting a piece of quartz from a wafer with a thickness of about 80 to 150 .mu.m by rotating the plane of the crystal defined by the electrical and mechanical axes 15 to 25.degree. about the electrical axis and then forming the wafer into a quartz tuning fork. The tuning fork is housed in a case sealed with a stem and coupled to electrical leads with heat resistent solder formed with more than about 90 wt % Pb and less than 10% Sn. The area within the case should be at a substantially high vacuum.
    Type: Grant
    Filed: August 27, 1993
    Date of Patent: July 5, 1994
    Assignee: Seiko Epson Corporation
    Inventors: Michiaki Takagi, Mitsuru Nagai