Patents by Inventor Mitul Modi

Mitul Modi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136326
    Abstract: Embodiments include semiconductor packages and a method to form such semiconductor packages. A semiconductor package includes a plurality of dies on a substrate, and an encapsulation layer over the substrate. The encapsulation layer surrounds the dies. The semiconductor package also includes a plurality of dummy silicon regions on the substrate. The dummy silicon regions surround the dies and encapsulation layer. The plurality of dummy silicon regions are positioned on two or more edges of the substrate. The dummy silicon regions have a top surface substantially coplanar to a top surface of the dies. The dummy silicon regions include materials that include silicon, metals, or highly-thermal conductive materials. The materials have a thermal conductivity of approximately 120 W/mK or greater, or is equal to or greater than the thermal conductivity of silicon. An underfill layer surrounds the substrate and the dies, where the encapsulation layer surrounds portions of the underfill layer.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 25, 2024
    Inventors: Wei LI, Edvin CETEGEN, Nicholas S. HAEHN, Ram S. VISWANATH, Nicholas NEAL, Mitul MODI
  • Patent number: 11942393
    Abstract: Embodiments herein relate to systems, apparatuses, or processes directed to a substrate that includes a first region to be coupled with a die, and a second region separate and distinct from the first region that has a lower thermal conductivity than the first region, where the second region is to thermally insulate the first region when the die is coupled to the first region. The thermal insulation of the second region may be used during a TCB process to increase the quality of each of the interconnects of the die by promoting a higher temperature at the connection points to facilitate full melting of solder.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Wei Li, Edvin Cetegen, Nicholas S. Haehn, Mitul Modi, Nicholas Neal
  • Patent number: 11901333
    Abstract: Embodiments include semiconductor packages and a method to form such semiconductor packages. A semiconductor package includes a plurality of dies on a substrate, and an encapsulation layer over the substrate. The encapsulation layer surrounds the dies. The semiconductor package also includes a plurality of dummy silicon regions on the substrate. The dummy silicon regions surround the dies and encapsulation layer. The plurality of dummy silicon regions are positioned on two or more edges of the substrate. The dummy silicon regions have a top surface substantially coplanar to a top surface of the dies. The dummy silicon regions include materials that include silicon, metals, or highly-thermal conductive materials. The materials have a thermal conductivity of approximately 120 W/mK or greater, or is equal to or greater than the thermal conductivity of silicon. An underfill layer surrounds the substrate and the dies, where the encapsulation layer surrounds portions of the underfill layer.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Wei Li, Edvin Cetegen, Nicholas S. Haehn, Ram S. Viswanath, Nicholas Neal, Mitul Modi
  • Publication number: 20240030116
    Abstract: Ultra-thin, hyper-density semiconductor packages and techniques of forming such packages are described. An exemplary semiconductor package is formed with one or more of: (i) metal pillars having an ultra-fine pitch (e.g., a pitch that is greater than or equal to 150 ?m, etc.); (ii) a large die-to-package ratio (e.g., a ratio that is equal to or greater than 0.85, etc.); and (iii) a thin pitch translation interposer. Another exemplary semiconductor package is formed using coreless substrate technology, die back metallization, and low temperature solder technology for ball grid array (BGA) metallurgy. Other embodiments are described.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 25, 2024
    Inventors: Debendra MALLIK, Robert L. SANKMAN, Robert NICKERSON, Mitul MODI, Sanka GANESAN, Rajasekaran SWAMINATHAN, Omkar KARHADE, Shawna M. LIFF, Amruthavalli ALUR, Sri Chaitra J. CHAVALI
  • Patent number: 11735495
    Abstract: Package assemblies with a molded substrate comprising fluid conduits. The fluid conduits may be operable for conveying a fluid (e.g., liquid and/or vapor) through some portion of the package substrate structure. Fluid conduits may be at least partially defined by an interconnect trace comprising a metal. The fluid conveyance may improve thermal management of the package assembly, for example removing heat dissipated by one or more integrated circuits (ICs) of the package assembly.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Omkar Karhade, Mitul Modi, Edvin Cetegen, Aastha Uppal
  • Publication number: 20230238355
    Abstract: Embodiments include semiconductor packages and a method to form such semiconductor packages. A semiconductor package includes a plurality of dies on a substrate, and an encapsulation layer over the substrate. The encapsulation layer surrounds the dies. The semiconductor package also includes a plurality of dummy silicon regions on the substrate. The dummy silicon regions surround the dies and encapsulation layer. The plurality of dummy silicon regions are positioned on two or more edges of the substrate. The dummy silicon regions have a top surface substantially coplanar to a top surface of the dies. The dummy silicon regions include materials that include silicon, metals, or highly-thermal conductive materials. The materials have a thermal conductivity of approximately 120 W/mK or greater, or is equal to or greater than the thermal conductivity of silicon. An underfill layer surrounds the substrate and the dies, where the encapsulation layer surrounds portions of the underfill layer.
    Type: Application
    Filed: March 28, 2023
    Publication date: July 27, 2023
    Inventors: Wei LI, Edvin CETEGEN, Nicholas S. HAEHN, Ram S. VISWANATH, Nicholas NEAL, Mitul MODI
  • Patent number: 11705377
    Abstract: An apparatus is provided which comprises: a plurality of dielectric layers forming a substrate, a plurality of first conductive contacts on a first surface of the substrate, a cavity in the first surface of the substrate defining a second surface parallel to the first surface, a plurality of second conductive contacts on the second surface of the substrate, one or more integrated circuit die(s) coupled with the second conductive contacts, and mold material at least partially covering the one or more integrated circuit die(s) and the first conductive contacts. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: July 18, 2023
    Assignee: Intel Corporation
    Inventors: Mitul Modi, Robert L. Sankman, Debendra Mallik, Ravindranath V. Mahajan, Amruthavalli P. Alur, Yikang Deng, Eric J. Li
  • Publication number: 20230138543
    Abstract: Ultra-thin, hyper-density semiconductor packages and techniques of forming such packages are described. An exemplary semiconductor package is formed with one or more of: (i) metal pillars having an ultra-fine pitch (e.g., a pitch that is greater than or equal to 150 ?m, etc.); (ii) a large die-to-package ratio (e.g., a ratio that is equal to or greater than 0.85, etc.); and (iii) a thin pitch translation interposer. Another exemplary semiconductor package is formed using coreless substrate technology, die back metallization, and low temperature solder technology for ball grid array (BGA) metallurgy. Other embodiments are described.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Inventors: Debendra MALLIK, Robert L. SANKMAN, Robert NICKERSON, Mitul MODI, Sanka GANESAN, Rajasekaran SWAMINATHAN, Omkar KARHADE, Shawna M. LIFF, Amruthavalli ALUR, Sri Chaitra J. CHAVALI
  • Publication number: 20230089494
    Abstract: Microelectronic assemblies including photonic integrated circuits (PICs), related devices and methods, are disclosed herein. For example, in some embodiments, a photonic assembly may include a PIC in a first layer having a first surface and an opposing second surface, wherein the first layer includes an insulating material, wherein the PIC has an active side, an opposing backside, and a lateral side substantially perpendicular to the active side and backside, and wherein the PIC is embedded in the insulating material with the active side facing up; an integrated circuit (IC) in a second layer at the second surface of the first layer, wherein the IC is electrically coupled to the active side of the PIC; and an optical component, having a reflector, optically coupled to the lateral side of the PIC and extending at least partially through the insulating material in the first layer along the lateral side of the PIC.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Applicant: Intel Corporation
    Inventors: Xiaoqian Li, Omkar G. Karhade, Nitin A. Deshpande, Srinivas V. Pietambaram, Mitul Modi
  • Publication number: 20230092821
    Abstract: Microelectronic assemblies including photonic integrated circuits (PICs), related devices and methods, are disclosed herein. For example, in some embodiments, a photonic assembly may include a PIC in a first layer including an insulating material, wherein the PIC is embedded in the insulating material with an active surface facing up; a conductive pillar in the first layer; an integrated circuit (IC) in a second layer on the first layer, wherein the second layer includes the insulating material and the IC is embedded in the insulating material, and wherein the IC is electrically coupled to the active surface of the PIC and the conductive pillar; an optical component optically coupled to the active surface of the PIC; and a hollow channel surrounding the optical component, the hollow channel extending from the active surface of the PIC through the insulating material in the second layer.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Applicant: Intel Corporation
    Inventors: Omkar G. Karhade, Xiaoqian Li, Nitin A. Deshpande, Ravindranath Vithal Mahajan, Srinivas V. Pietambaram, Bharat Prasad Penmecha, Mitul Modi
  • Patent number: 11611164
    Abstract: A wide bandwidth signal connector plug, comprising a plurality of signal pins having a first anchor portion and a first mating portion, and a plurality of ground pins having a second anchor portion and a second mating portion. The plurality of ground pins is adjacent to the plurality of signal pins. The plurality of signal pins has a first thickness and the plurality of ground pins has a second thickness that is greater than the first thickness. The first anchor portion has a first width and the second anchor portion has a second width that is greater than the first width.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Zhenguo Jiang, Omkar Karhade, Sri Chaitra Chavali, William Lambert, Zhichao Zhang, Mitul Modi
  • Publication number: 20230080454
    Abstract: An optoelectronic assembly is disclosed, comprising a substrate having a core comprised of glass, and a photonic integrated circuit (PIC) and an electronic IC (EIC) coupled to a first side of the substrate. The core comprises a waveguide with a first endpoint proximate to the first side and a second endpoint exposed on a second side of the substrate orthogonal to the first side. The first endpoint of the waveguide is on a third side of the core parallel to the first side of the substrate. The substrate further comprises an optical via aligned with the first endpoint, and the optical via extends between the first side and the third side. In various embodiments, the waveguide is of any shape that can be inscribed by a laser between the first endpoint and the second endpoint.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 16, 2023
    Applicant: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Brandon C. Marin, Debendra Mallik, Tarek A. Ibrahim, Jeremy Ecton, Omkar G. Karhade, Bharat Prasad Penmecha, Xiaoqian Li, Nitin A. Deshpande, Mitul Modi, Bai Nie
  • Patent number: 11574851
    Abstract: An apparatus is provided which comprises: a package substrate, an integrated circuit device coupled to a surface of the package substrate, a first material on the surface of the package substrate, the first material contacting one or more lateral sides of the integrated circuit device, the first material extending at least to a surface of the integrated circuit device opposite the package substrate, two or more separate fins over a surface of the integrated circuit device, the two or more fins comprising a second material having a different composition than the first material, and a third material having a different composition than the second material, the third material over the surface of the integrated circuit device and between the two or more fins. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 7, 2023
    Assignee: Intel Corporation
    Inventors: Aastha Uppal, Omkar Karhade, Ram Viswanath, Je-Young Chang, Weihua Tang, Nitin Deshpande, Mitul Modi, Edvin Cetegen, Sanka Ganesan, Yiqun Bai, Jan Krajniak, Kumar Singh
  • Patent number: 11545407
    Abstract: An integrated circuit package may be formed having at least one heat dissipation structure within the integrated circuit package itself. In one embodiment, the integrated circuit package may include a substrate; at least one integrated circuit device, wherein the at least one integrated circuit device is electrically attached to the substrate; a mold material on the substrate and adjacent to the at least one integrated circuit device; and at least one heat dissipation structure contacting the at least one integrated circuit, wherein the at least one heat dissipation structure is embedded either within the mold material or between the mold material and the substrate.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: January 3, 2023
    Assignee: Intel Corporation
    Inventors: Kumar Abhishek Singh, Omkar Karhade, Nitin Deshpande, Mitul Modi, Edvin Cetegen, Aastha Uppal, Debendra Mallik, Sanka Ganesan, Yiqun Bai, Jan Krajniak, Manish Dubey, Ravindranath Mahajan, Ram Viswanath, James C. Matayabas, Jr.
  • Publication number: 20220344247
    Abstract: Ultra-thin, hyper-density semiconductor packages and techniques of forming such packages are described. An exemplary semiconductor package is formed with one or more of: (i) metal pillars having an ultra-fine pitch (e.g., a pitch that is greater than or equal to 150 ?m, etc.); (ii) a large die-to-package ratio (e.g., a ratio that is equal to or greater than 0.85, etc.); and (iii) a thin pitch translation interposer. Another exemplary semiconductor package is formed using coreless substrate technology, die back metallization, and low temperature solder technology for ball grid array (BGA) metallurgy. Other embodiments are described.
    Type: Application
    Filed: July 11, 2022
    Publication date: October 27, 2022
    Inventors: Debendra MALLIK, Robert L. SANKMAN, Robert NICKERSON, Mitul MODI, Sanka GANESAN, Rajasekaran SWAMINATHAN, Omkar KARHADE, Shawna M. LIFF, Amruthavalli ALUR, Sri Chaitra J. CHAVALI
  • Patent number: 11430724
    Abstract: Ultra-thin, hyper-density semiconductor packages and techniques of forming such packages are described. An exemplary semiconductor package is formed with one or more of: (i) metal pillars having an ultra fine pitch (e.g., a pitch that is greater than or equal to 150 ?m, etc.); (ii) a large die to-package ratio (e.g., a ratio that is equal to or greater than 0.85, etc.); and (iii) a thin pitch translation interposer. Another exemplary semiconductor package is formed using coreless substrate technology, die back metallization, and low temperature solder technology for ball grid array (BGA) metallurgy. Other embodiments are described.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: August 30, 2022
    Assignee: Intel Corporation
    Inventors: Debendra Mallik, Robert L. Sankman, Robert Nickerson, Mitul Modi, Sanka Ganesan, Rajasekaran Swaminathan, Omkar Karhade, Shawna M. Liff, Amruthavalli Alur, Sri Chaitra J. Chavali
  • Publication number: 20220238402
    Abstract: An apparatus is provided which comprises: a plurality of dielectric layers forming a substrate, a plurality of first conductive contacts on a first surface of the substrate, a cavity in the first surface of the substrate defining a second surface parallel to the first surface, a plurality of second conductive contacts on the second surface of the substrate, one or more integrated circuit die(s) coupled with the second conductive contacts, and mold material at least partially covering the one or more integrated circuit die(s) and the first conductive contacts. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: April 13, 2022
    Publication date: July 28, 2022
    Applicant: Intel Corporation
    Inventors: Mitul MODI, Robert L. SANKMAN, Debendra MALLIK, Ravindranath V. MAHAJAN, Amruthavalli P. ALUR, Yikang DENG, Eric J. LI
  • Patent number: 11328968
    Abstract: An apparatus is provided which comprises: a plurality of dielectric layers forming a substrate, a plurality of first conductive contacts on a first surface of the substrate, a cavity in the first surface of the substrate defining a second surface parallel to the first surface, a plurality of second conductive contacts on the second surface of the substrate, one or more integrated circuit die(s) coupled with the second conductive contacts, and mold material at least partially covering the one or more integrated circuit die(s) and the first conductive contacts. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: May 10, 2022
    Assignee: Intel Corporation
    Inventors: Mitul Modi, Robert L. Sankman, Debendra Mallik, Ravindranath V. Mahajan, Amruthavalli P. Alur, Yikang Deng, Eric J. Li
  • Publication number: 20220102234
    Abstract: An integrated circuit (IC) package comprising a die having a front side and a back side. A solder thermal interface material (STIM) comprising a first metal is over the backside. The TIM has a thermal conductivity of not less than 40 W/mK; and a die backside material (DBM) comprising a second metal over the STIM, wherein the DBM has a CTE of not less than 18×10?6 m/mK, wherein an interface between the STIM and the DBM comprises at least one intermetallic compound (IMC) of the first metal and the second metal.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Susmriti Das Mahapatra, Malavarayan Sankarasubramanian, Shenavia Howell, John Harper, Mitul Modi
  • Publication number: 20220102231
    Abstract: Techniques and mechanisms for facilitating heat conductivity in a packaged device with a dummy die. In an embodiment, a packaged device comprises a substrate and one or more IC die coupled thereto. A dummy die structure extends to a bottom of a recess structure formed by a first package mold structure on the substrate. The dummy die structure comprises a polymer resin and a filler, or comprises a metal which has a low coefficient of thermal expansion (CTE). A second package mold structure, which extends to the recess structure, is adjacent to the first package mold structure and to an IC die. In another embodiment, a first CTE of the dummy die is less than a second CTE of one of the package mold structures, and a first thermal conductivity of the dummy die is greater than a second thermal conductivity of the one of the package mold structures.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Mitul Modi, Joseph Van Nausdle, Omkar Karhade, Edvin Cetegen, Nicholas Haehn, Vaibhav Agrawal, Digvijay Raorane