Patents by Inventor Miwako Nakahara

Miwako Nakahara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100009862
    Abstract: The present invention aims to improve detecting accuracy and reproducibility of a biomolecule sensor. The biomolecule sensor of the present invention includes single probe molecules orderly aligned and fixed on grid points on the surface of a substrate. Accordingly, in the biomolecule sensor of the present invention: probe molecules for detecting a biomolecule are orderly aligned and separately fixed; blocking for preventing non-specific adsorption is applied to a region other than the region of the probe molecules for detecting a biomolecule; and fluorescence enhancement is achieved by metal microparticles.
    Type: Application
    Filed: January 31, 2008
    Publication date: January 14, 2010
    Inventors: Miwako NAKAHARA, Takashi Inoue, Osamu Kogi
  • Publication number: 20080095935
    Abstract: A biosensor is formed by immobilizing metal particles immobilized on a surface of a carrier and immobilizing probe molecules which are modified with fluorescent molecules on the metal particles. A biomolecule is detected at high sensitivity by use of this biosensor and utilizing fluorescence-quenching and fluorescence-enhancement effects attributable to the metal particle. In this way, it is possible to omit amplification of the biomolecule in a specimen and fluorescence-labeling on the biomolecule when detecting the biomolecule with the biosensor. It is also possible to improve quantitative reliability and repeatability of the biosensor.
    Type: Application
    Filed: September 25, 2007
    Publication date: April 24, 2008
    Inventors: Miwako Nakahara, Takashi Inoue, Shinichi Taniguchi
  • Publication number: 20080014581
    Abstract: A biosensor is formed by immobilizing metal particles immobilized on a surface of a carrier and immobilizing probe molecules which are modified with fluorescent molecules on the metal particles. A biomolecule is detected at high sensitivity by use of this biosensor and utilizing fluorescence-quenching and fluorescence-enhancement effects attributable to the metal particle. In this way, it is possible to omit amplification of the biomolecule in a specimen and fluorescence-labeling on the biomolecule when detecting the biomolecule with the biosensor. It is also possible to improve quantitative reliability and repeatability of the biosensor.
    Type: Application
    Filed: February 2, 2007
    Publication date: January 17, 2008
    Inventors: Miwako Nakahara, Takashi Inoue, Shinichi Taniguchi
  • Patent number: 7264677
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their oxides, and the ozone without any damages to wafers and reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: September 4, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Publication number: 20070003945
    Abstract: When a biomolecule and a biochemical reactant are detected, a white interference method is used to conduct a noncontact and nondestructive detection, and further to conduct efficient and accurate detection. This method is applied to a biosensor element, whereby non-labeled and noncontact quality control can be achieved.
    Type: Application
    Filed: November 10, 2005
    Publication date: January 4, 2007
    Inventors: Miwako Nakahara, Takashi Inoue, Tomonori Saeki, Osamu Kogi, Noriko Ban
  • Publication number: 20070004027
    Abstract: When probe biomolecules are immobilized on a substrate surface, a surfactant (phase transfer catalyst) is added for reaction, whereby immobilization efficiency of the probe biomolecules and coating uniformity thereof are improved. Consequently, it is possible to dramatically improve quantitativity and reproducibility of the biosensor element.
    Type: Application
    Filed: November 10, 2005
    Publication date: January 4, 2007
    Inventors: Miwako Nakahara, Takashi Inoue, Tomonori Saeki, Osamu Kogi, Noriko Ban
  • Patent number: 7025896
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their oxides, and the ozone without any damages to wafers and reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: April 11, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Publication number: 20060037627
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their oxides, and the ozone without any damages to wafers and reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Application
    Filed: October 19, 2005
    Publication date: February 23, 2006
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Patent number: 6905928
    Abstract: When polycrystalline silicon germanium film is used for gate electrodes in a MOS transistor apparatus, there have been problems of reduced reliability in the gate insulating film, due to stress in the silicon germanium grains. Therefore, a polysilicon germanium film is formed, after forming silicon fine particles of particle size 10 nm or less on an oxide film. As a result, it is possible to achieve a high-speed MOS transistor apparatus using an ultra-thin oxide film having a film thickness of 1.5 nm or less, wherein the Ge concentration of the polycrystalline silicon germanium at its interface with the oxide film is uniform, thereby reducing the stress in the film, and improving the reliability of the gate electrode.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: June 14, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Naoki Kanda, Arito Ogawa, Eisuke Nishitani, Miwako Nakahara, Tadanori Yoshida, Kiyoshi Ogata
  • Patent number: 6870224
    Abstract: When polycrystalline silicon germanium film is used for gate electrodes in a MOS transistor apparatus, there have been problems of reduced reliability in the gate insulating film, due to stress in the silicon germanium grains. Therefore, a polysilicon germanium film is formed, after forming silicon fine particles of particle size 10 nm or less on an oxide film. As a result, it is possible to achieve a high-speed MOS transistor apparatus using an ultra-thin oxide film having a film thickness of 1.5 nm or less, wherein the Ge concentration of the polycrystalline silicon germanium at its interface with the oxide film is uniform, thereby reducing the stress in the film, and improving the reliability of the gate electrode.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: March 22, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Naoki Kanda, Arito Ogawa, Eisuke Nishitani, Miwako Nakahara, Tadanori Yoshida, Kiyoshi Ogata
  • Patent number: 6861299
    Abstract: Inexpensive, unannealed glass is used as a substrate. The surface of a polycrystalline silicon film doped with boron (B) or phosphorus (P) is oxidized with ozone at a processing temperature of 500° C. or below to form a silicon oxide film of 4 to 20 nm thick on the surface of polycrystalline silicon. On account of this treatment, the level density at the interface between the gate-insulating layer and the channel layer can be made lower, and a thin-film transistor having less variations of characteristics can be formed on the unannealed glass substrate.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: March 1, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Kazuhiko Horikoshi, Klyoshi Ogata, Takuo Tamura, Miwako Nakahara, Makoto Ohkura, Ryoji Oritsuki, Yasushi Nakano, Takeo Shiba
  • Patent number: 6815717
    Abstract: To a polycrystalline silicon layer crystallized by irradiation with laser light, a mixed gas comprised of ozone gas and H2O or N2O gas is fed at a processing temperature of 500° C. or below, or the polycrystalline silicon layer is previously treated with a solution such as ozone water or an aqueous NH3/hydrogen peroxide solution, followed by oxidation treatment with ozone, to form a silicon oxide layer with a thickness of 4 nm or more at the surface of the polycrystalline silicon layer for forming a thin-film transistor having characteristics that are less varying on a glass substrate previously not annealed.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: November 9, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Kazuhiko Horikoshi, Kiyoshi Ogata, Miwako Nakahara, Takuo Tamura, Yasushi Nakano, Ryoji Oritsuki, Toshihiko Itoga, Takahiro Kamo
  • Publication number: 20040145001
    Abstract: When polycrystalline silicon germanium film is used for gate electrodes in a MOS transistor apparatus, there have been problems of reduced reliability in the gate insulating film, due to stress in the silicon germanium grains. Therefore, a polysilicon germanium film is formed, after forming silicon fine particles of particle size 10 nm or less on an oxide film. As a result, it is possible to achieve a high-speed MOS transistor apparatus using an ultra-thin oxide film having a film thickness of 1.5 nm or less, wherein the Ge concentration of the polycrystalline silicon germanium at its interface with the oxide film is uniform, thereby reducing the stress in the film, and improving the reliability of the gate electrode.
    Type: Application
    Filed: August 15, 2003
    Publication date: July 29, 2004
    Applicant: Hitachi, Ltd., Incorporation
    Inventors: Naoki Kanda, Arito Ogawa, Eisuke Nishitani, Miwako Nakahara, Tadanori Yoshida, Kiyoshi Ogata
  • Patent number: 6767760
    Abstract: To a polycrystalline silicon layer crystallized by irradiation with laser light, a mixed gas comprised of ozone gas and H2O or N2O gas is fed at a processing temperature of 500° C. or below, or the polycrystalline silicon layer is previously treated with a solution such as ozone water or an aqueous NH3/hydrogen peroxide solution, followed by oxidation treatment with ozone, to form a silicon oxide layer of 4 nm or more thick at the surface of the polycrystalline silicon layer for forming a thin-film transistor having less variations of characteristics on an unannealed glass substrate.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: July 27, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Kazuhiko Horikoshi, Kiyoshi Ogata, Miwako Nakahara, Takuo Tamura, Yasushi Nakano, Ryoji Oritsuki, Toshihiko Itoga, Takahiro Kamo
  • Publication number: 20040051139
    Abstract: When polycrystalline silicon germanium film is used for gate electrodes in a MOS transistor apparatus, there have been problems of reduced reliability in the gate insulating film, due to stress in the silicon germanium grains. Therefore, a polysilicon germanium film is formed, after forming silicon fine particles of particle size 10 nm or less on an oxide film. As a result, it is possible to achieve a high-speed MOS transistor apparatus using an ultra-thin oxide film having a film thickness of 1.5 nm or less, wherein the Ge concentration of the polycrystalline silicon germanium at its interface with the oxide film is uniform, thereby reducing the stress in the film, and improving the reliability of the gate electrode.
    Type: Application
    Filed: August 15, 2003
    Publication date: March 18, 2004
    Applicant: Hitachi, Ltd
    Inventors: Naoki Kanda, Arito Ogawa, Eisuke Nishitani, Miwako Nakahara, Tadanori Yoshida, Kiyoshi Ogata
  • Patent number: 6664184
    Abstract: A pretreatment in which impurities containing carbon are removed from a conductor film formed on a substrate is performed prior to an etching treatment of the conductor film. In this pretreatment, a gas containing oxygen, nitrogen, or a nitrogen oxide is irradiated with ultraviolet rays or electromagnetic waves, and this gas is supplied to the substrate surface, which has been heated to a temperature of 200° C. or lower. This allows a semiconductor device having at least one type of conductor film selected from among a ruthenium film, a ruthenium oxide film, an osmium film, and an osmium oxide film to be manufactured inexpensively and at a high level of quality.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: December 16, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Miwako Nakahara, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Publication number: 20030205553
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their oxides, and the ozone without any damages to wafers and reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Application
    Filed: June 13, 2003
    Publication date: November 6, 2003
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe
  • Publication number: 20030189205
    Abstract: Inexpensive, unannealed glass is used as a substrate. The surface of a polycrystalline silicon film doped with boron (B) or phosphorus (P) is oxidized with ozone at a processing temperature of 500° C. or below to form a silicon oxide film of 4 to 20 nm thick on the surface of polycrystalline silicon. On account of this treatment, the level density at the interface between the gate-insulating layer and the channel layer can be made lower, and a thin-film transistor having less variations of characteristics can be formed on the unannealed glass substrate.
    Type: Application
    Filed: April 2, 2003
    Publication date: October 9, 2003
    Inventors: Kazuhiko Horikoshi, Klyoshi Ogata, Takuo Tamura, Miwako Nakahara, Makoto Ohkura, Ryoji Oritsuki, Yasushi Nakano, Takeo Shiba
  • Publication number: 20030183901
    Abstract: When polycrystalline silicon germanium film is used for gate electrodes in a MOS transistor apparatus, there have been problems of reduced reliability in the gate insulating film, due to stress in the silicon germanium grains. Therefore, a polysilicon germanium film is formed, after forming silicon fine particles of particle size 10 nm or less on an oxide film. As a result, it is possible to achieve a high-speed MOS transistor apparatus using an ultra-thin oxide film having a film thickness of 1.5 nm or less, wherein the Ge concentration of the polycrystalline silicon germanium at its interface with the oxide film is uniform, thereby reducing the stress in the film, and improving the reliability of the gate electrode.
    Type: Application
    Filed: May 9, 2002
    Publication date: October 2, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Naoki Kanda, Arito Ogawa, Eisuke Nishitani, Miwako Nakahara, Tadanori Yoshida, Kiyoshi Ogata
  • Patent number: 6613242
    Abstract: Ruthenium, osmium and their oxides can be etched simply and rapidly by supplying an atomic oxygen-donating gas, typically ozone, to the aforementioned metals and their oxides through catalysis between the metals and their reactors and application of the catalysis not only to the etching but also to chamber cleaning ensures stable operation of reactors and production of high quality devices.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: September 2, 2003
    Inventors: Miwako Nakahara, Toshiyuki Arai, Shigeru Ohno, Takashi Yunogami, Sukeyoshi Tsunekawa, Kazuto Watanabe