Patents by Inventor Mohamed Elanany

Mohamed Elanany has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11060042
    Abstract: Copolymers having General Formula (I): in which R1 is chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combinations thereof, where: the divalent C4-C7 heteroaliphatic groups include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 is two; x is a molar fraction range chosen from 0.05 to 0.95; and y is a molar fraction range chosen from 0.05 to 0.95, where the summation of x and y equals 1. Methods for inhibiting formation of clathrate hydrates in a fluid capable of forming the clathrate hydrates. The methods include contacting the fluid with at least one copolymer of General Formula (I) under conditions suitable for forming the clathrate hydrates.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: July 13, 2021
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Khalid Majnouni, Rashed Alessa, Abdullah Al-Malki, Hassan Al-Ajwad, Mohammed Al-Daous, Shaikh Asrof Ali
  • Patent number: 11059926
    Abstract: Copolymers having General Formula (I): in which R1 and R3 are chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combinations thereof, where the divalent C4-C7 heteroaliphatic groups of R1 and R3 include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 or R3 is two, R2 is chosen from Q1 and Q2, x is a molar fraction range chosen from 0.1 to 0.9, y is a molar fraction range chosen from 0.1 to 0.9, and z is a molar fraction range chosen from 0 to 0.8, where the summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with at least one copolymer of General Formula (I).
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 13, 2021
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Abdullah Al-Malki, Manal Al-Eid, Mohammed Al-Daous, Shaikh Asrof Ali, Khalid Majnouni
  • Patent number: 10723630
    Abstract: A method of forming a composite zeolite catalyst includes combining a silicon source and an aqueous organic structure directing agent having a polyamino cation compound to form a silica intermediary gel, introducing an aluminum precursor to the silica intermediary gel to form a catalyst precursor gel, evaporating water in the catalyst precursor gel to form a catalyst gel, and heating the catalyst gel to form a composite zeolite catalyst particle having an intergrowth region with a mixture of both Beta crystals and ZSM-5 crystals. An associated method of making xylene includes feeding heavy reformate to a reactor, the reactor containing the composite zeolite catalyst, and producing xylene by simultaneously performing dealkylation and transalkylation of the heavy reformate in the reactor, where each composite zeolite catalyst particle is able to catalyze both the dealkylation and transalkylation reactions.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: July 28, 2020
    Assignees: Saudi Arabian Oil Company, Universitat Politecnica De Valencia, Consejo Superior De Investigaciones Cientificas
    Inventors: Mohamed Elanany, Raed Abudawoud, Avelino Corma Canos, M. Teresa Portilla Ovejero, Vicente J. Margarit Benavent, M. Teresa Navarro Villalba, M. Cristina Martinez Sanchez, Ibrahim M. Al-Zahrani, Khalid A. Al-Majnouni
  • Publication number: 20200148828
    Abstract: Copolymers having General Formula (I): in which R1 is chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combinations thereof, where: the divalent C4-C7 heteroaliphatic groups include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 is two; x is a molar fraction range chosen from 0.05 to 0.95; and y is a molar fraction range chosen from 0.05 to 0.95, where the summation of x and y equals 1. Methods for inhibiting formation of clathrate hydrates in a fluid capable of forming the clathrate hydrates. The methods include contacting the fluid with at least one copolymer of General Formula (I) under conditions suitable for forming the clathrate hydrates.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 14, 2020
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Khalid Majnouni, Rashed Alessa, Abdullah Al-Malki, Hassan Al-Ajwad, Mohammed Al-Daous, Shaikh Asrof Ali
  • Publication number: 20200115484
    Abstract: Copolymers having General Formula (I): in which R1 and R3 are chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combination thereof, where the divalent C4-C7 heteroaliphatic groups of R1 and R3 include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 or R3 is two, R2 is chosen from Q1 and Q2, x is a molar fraction range chosen from 0.1 to 0.9, y is a molar fraction range chosen from 0.1 to 0.9, and z is a molar fraction range chosen from 0 to 0.8, where the summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with at least one copolymer of General Formula (I).
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Abdullah Al-Malki, Manal Al-Eid, Mohammed Al-Daous, Shaikh Asrof Ali, Khalid Majnouni
  • Patent number: 10550215
    Abstract: Copolymers having General Formula (I): in which R1 and R3 are chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combination thereof, where the divalent C4-C7 heteroaliphatic groups of R1 and R3 include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 or R3 is two, R2 is chosen from Q1 and Q2, x is a molar fraction range chosen from 0.1 to 0.9, y is a molar fraction range chosen from 0.1 to 0.9, and z is a molar fraction range chosen from 0 to 0.8, where the summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with at least one copolymer of General Formula (I).
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: February 4, 2020
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Abdullah Al-Malki, Manal Al-Eid, Mohammed Al-Daous, Shaikh Asrof Ali, Khalid Majnouni
  • Publication number: 20190284056
    Abstract: A method of forming a composite zeolite catalyst includes combining a silicon source and an aqueous organic structure directing agent having a polyamino cation compound to form a silica intermediary gel, introducing an aluminum precursor to the silica intermediary gel to form a catalyst precursor gel, evaporating water in the catalyst precursor gel to form a catalyst gel, and heating the catalyst gel to form a composite zeolite catalyst particle having an intergrowth region with a mixture of both Beta crystals and ZSM-5 crystals. An associated method of making xylene includes feeding heavy reformate to a reactor, the reactor containing the composite zeolite catalyst, and producing xylene by simultaneously performing dealkylation and transalkylation of the heavy reformate in the reactor, where each composite zeolite catalyst particle is able to catalyze both the dealkylation and transalkylation reactions.
    Type: Application
    Filed: March 12, 2019
    Publication date: September 19, 2019
    Applicants: Saudi Arabian Oil Company, Instituto de Tecnologia Quimica, UPV-CSIC
    Inventors: Mohamed Elanany, Raed Abudawoud, Avelino Corma Canos, M. Teresa Portilla Ovejero, Vicente J. Margarit Benavent, M. Teresa Navarro Villalba, M. Cristina Martinez Sanchez, Ibrahim M. Al-Zahrani, Khalid A. Al-Majnouni
  • Patent number: 10189986
    Abstract: Copolymers having General Formula (I): in which R1, R2, and R3 are chosen from C1 to C30 aliphatic groups, R4 is chosen from divalent C4 to C7 linear aliphatic groups and divalent C4 to C7 linear heteroaliphatic groups, optionally substituted with one or more C1-C6 linear aliphatic groups, C1-C6 branched aliphatic groups, or combination thereof, R5, R6, and R7 are each independently chosen from methyl or hydrogen, x is chosen from 0 to 0.8, y is chosen from 0 to 0.8, when y is 0, x is greater than 0, and when x is 0, y is greater than 0, and z is chosen from 0.1 to 0.9. The summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates in a fluid capable of forming the clathrate hydrates, including contacting the fluid with at least one copolymer of General Formula (I).
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: January 29, 2019
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Khalid Majnouni, Rashed Alessa, Abdullah Al-Malki, Mohammed Al-Daous, Hassan Al-Ajwad, Shaikh Asrof Ali, Shadi Adel, Megat Rithauddeen
  • Publication number: 20170321012
    Abstract: Copolymers having General Formula (I): in which R1 is chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combinations thereof, where: the divalent C4-C7 heteroaliphatic groups include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 is two; x is a molar fraction range chosen from 0.05 to 0.95; and y is a molar fraction range chosen from 0.05 to 0.95, where the summation of x and y equals 1. Methods for inhibiting formation of clathrate hydrates in a fluid capable of forming the clathrate hydrates. The methods include contacting the fluid with at least one copolymer of General Formula (I) under conditions suitable for forming the clathrate hydrates.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 9, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Khalid Majnouni, Rashed Alessa, Abdullah Al-Malki, Hassan Al-Ajwad, Mohammed Al-Daous, Shaikh Asrof Ali
  • Publication number: 20170320985
    Abstract: Methods for synthesizing acryloyl-based copolymers. The methods include providing a free radical initiator with a solution including monomeric repeating units, a chain transfer agent, and an organic solvent to form a reaction mixture, in which the monomeric repeating units include a first monomeric repeating unit having formula (1a), a second monomeric repeating unit having formula (1b) or (1d), and optionally a third monomeric repeating unit having formula (1c): in which the organic solvent is chosen from monoethylene glycol, ethanol, toluene, or combination thereof; and (B) initiating a polymerization reaction in the reaction mixture to polymerize the monomeric repeating units, thereby synthesizing the acryloyl-based copolymer. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with the acryloyl-based copolymer synthesized in the reaction mixture.
    Type: Application
    Filed: May 3, 2017
    Publication date: November 9, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Sameer A. Al-Ghamdi, Abdullah Al-Malki, Manal Al-Eid, Mohamed Elanany, Shaikh Asrof Ali
  • Publication number: 20170321108
    Abstract: Copolymers having General Formula (I): in which R1 and R3 are chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combination thereof, where the divalent C4-C7 heteroaliphatic groups of R1 and R3 include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 or R3 is two, R2 is chosen from Q1 and Q2, x is a molar fraction range chosen from 0.1 to 0.9, y is a molar fraction range chosen from 0.1 to 0.9, and z is a molar fraction range chosen from 0 to 0.8, where the summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with at least one copolymer of General Formula (I).
    Type: Application
    Filed: May 3, 2017
    Publication date: November 9, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Khalid Majnouni, Abdullah Al-Malki, Mohamed Elanany, Manal Al-Eid, Mohammed Al-Daous, Shaikh Asrof Ali
  • Publication number: 20170321050
    Abstract: Copolymers having General Formula (I): in which R1, R2, and R3 are chosen from C1 to C30 aliphatic groups, R4 is chosen from divalent C4 to C7 linear aliphatic groups and divalent C4 to C7 linear heteroaliphatic groups, optionally substituted with one or more C1-C6 linear aliphatic groups, C1-C6 branched aliphatic groups, or combination thereof, R5, R6, and R7 are each independently chosen from methyl or hydrogen, x is chosen from 0 to 0.8, y is chosen from 0 to 0.8, when y is 0, x is greater than 0, and when x is 0, y is greater than 0, and z is chosen from 0.1 to 0.9. The summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates in a fluid capable of forming the clathrate hydrates, including contacting the fluid with at least one copolymer of General Formula (I).
    Type: Application
    Filed: May 2, 2017
    Publication date: November 9, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Khalid Majnouni, Rashed Alessa, Abdullah Al-Malki, Mohammed Al-Daous, Hassan Al-Ajwad, Shaikh Asrof Ali, Shadi Adel, Megat Rithauddeen
  • Patent number: 8821715
    Abstract: An electrochemical catalytic method for the hydrodesulfurization of a petroleum-based hydrocarbon stream is described involving a hydrogen-containing gas in an electrochemical cell employing Non Faradic Electrochemical Modification of Electrochemical Activity.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 2, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Ahmad D. Hammad, Esam Zaki Hamad, Mohamed Saber Mohamed Elanany
  • Patent number: 8444843
    Abstract: An electrocatalytic process to remove organic sulfur compounds from a mixture of water containing a miscible electrolyte and a hydrocarbon feedstock involving the application of a current of electricity to cause the dissociation of the water which produces hydrogen at a catalytic cathode which reduces the organic sulfur compounds in the hydrocarbon with the evolution of H2S which is separated and collected, and the separation and collection of the treated hydrocarbon.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: May 21, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Mohamed Elanany, Esam Z. Hamad
  • Publication number: 20120298524
    Abstract: An electrochemical catalytic method for the hydrodesulfurization of a petroleum-based hydrocarbon stream is described involving a hydrogen-containing gas in an electrochemical cell employing Non Faradic Electrochemical Modification of Electrochemical Activity.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Inventors: Ahmad D. HAMMAD, Esam Zaki Hamad, Mohamed Saber Mohamed Elanany
  • Publication number: 20110253557
    Abstract: An electrocatalytic process to remove organic sulfur compounds from a mixture of water containing a miscible electrolyte and a hydrocarbon feedstock involving the application of a current of electricity to cause the dissociation of the water which produces hydrogen at a catalytic cathode which reduces the organic sulfur compounds in the hydrocarbon with the evolution of H2S which is separated and collected, and the separation and collection of the treated hydrocarbon.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 20, 2011
    Inventors: Mohamed Elanany, Esam Z. Hamad