Patents by Inventor Mohammad Al-Haj Ali

Mohammad Al-Haj Ali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604595
    Abstract: A process for withdrawing polyolefins from a reactor includes: continuously withdrawing a liquid solution stream from a solution polymerization reactor and passing the liquid solution stream into a low pressure separator; withdrawing a first vapour stream and a first liquid stream from the separator and passing the first vapour stream into a washing column; withdrawing a second vapour stream from the washing column and feeding it via a condenser line to a condenser; cooling the second vapour stream in the condenser so that part of the second vapour stream condenses, producing a condensed second vapour stream and an uncondensed second vapour stream; passing the condensed second vapour stream to an upper part of the washing column via a reflux line; withdrawing a second liquid stream from the washing column and passing at least part of the second liquid stream to the separator via a recycling line; and recovering heat.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: March 31, 2020
    Assignee: BOREALIS AG
    Inventors: Mohammad Al-Haj Ali, Erik Eriksson, Sameer Vijay, Guhan Mathivanan, Jukka Rasanen, Henry Sleijster, Christof Wurnitsch, Samuli Zitting
  • Patent number: 10597472
    Abstract: An in-line blending process for polymers comprising: (a) providing two or more reactor-low pressure separator units (1,7) in parallel configuration, each reactor-low pressure separator unit comprising one reactor (2,8) fluidly connected to one low pressure separator (3,9) downstream and further a recycling line (5,11) connecting the low pressure separator (3,9) back to the corresponding reactor (2,8); (b) polymerizing olefin monomers having two or more carbon atoms in each of the reactors (2,8) in solution polymerisation; (c) forming an unreduced reactor effluents stream including a homogenous fluid phase polymer-monomer-solvent mixture in each of the reactors (2,8), (d) passing the unreduced reactor effluents streams from each of the reactors (2,8) through the corresponding low pressure separators (3,9), whereby the temperature and pressure of the low pressure separators (3,9) is adjusted such that a liquid phase and a vapour phase are obtained, whereby yielding a polymer-enriched liquid phase and a polymer-
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: March 24, 2020
    Assignee: BOREALIS AG
    Inventors: Henry Sleijster, Mohammad Al-Haj Ali, Jukka Rasanen, Samuli Zitting, Michiel Bergstra, Erik Eriksson, Christof Wurnitsch, Guhan Mathivanan, Sameer Vijay, Vasileios Kanellopoulos, Jani Aho, Jouni Takakarhu
  • Publication number: 20200062876
    Abstract: A process for reducing the volatile organic compound content of granular plastomers having a density of equal to or lower than 883 kg/m3 and a MFR2 of 100.0 g/10 min or lower (ISO 1133 at 2.16 kg load and 190° C.), to below 65 ppm (VOC, VDA277), the process comprising the steps of providing a granular raw plastomer in a treatment vessel, the granular raw plastomer having a density of equal to or lower than 883 kg/m3, and a MFR2 of 100.0 g/10 min or lower (ISO 1133 at 2.16 kg load and 190° C.), and a volatile organic compound content (VOC, VDA277) of above 150 ppm, subjecting said granular raw plastomer to a gasflow within the range of 30 m3/(h t) to 150 m3/(h t) for an aeration time of less than 96 hours, whereby the gas has a minimum temperature of at least 26° C. measured at a gas inlet of the treatment vessel and a maximum temperature of 4° C. below the Vicat temperature (10 N, ISO 306) of the granular raw plastomer or 35° C.
    Type: Application
    Filed: September 21, 2017
    Publication date: February 27, 2020
    Inventors: Mohammad Al-Haj Ali, Michiel Bergstra, Stefan Hochradl, Velichko Hristov, Alexander Standler
  • Publication number: 20190270830
    Abstract: The present invention is directed to a process for separating an olefm copolymer from volatile gases using a flash separator. The flash separator can be used with a solution or high pressure process. The mass transport of volatile gases from the viscous polymer melt is increased.
    Type: Application
    Filed: September 18, 2017
    Publication date: September 5, 2019
    Inventors: Vasileios Kanellopoulos, Mohammad Al-Haj Ali, Apostolos Krallis
  • Patent number: 10358507
    Abstract: The present invention is directed to a process for separating hydrocarbons from a solution comprising a polymer. The process comprises the steps of: (A) withdrawing a solution stream comprising the polymer from a first vessel; (B) passing the solution stream into a flash vessel; (C) spraying the solution stream into droplets in the first flash vessel thereby establishing a stream of droplets within the flash vessel. The solution forms a downwards falling film within the flash vessel.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: July 23, 2019
    Assignee: BOREALIS AG
    Inventors: Mohammad Al-Haj Ali, Vasileios Kanellopoulos, Apostolos Krallis, Henry Sleijster, Samuli Zitting
  • Publication number: 20180371201
    Abstract: The present invention deals with a process for polymerising olefins in a solution and withdrawing a stream of the solution from the polymerisation reactor and passing it to a sequence of heating steps. The heated solution is passed to a separation step, which is conducted at a pressure of no more than 15 bar and in which separation step a liquid phase comprising the polymer and a vapour phase coexist. A vapour stream and a concentrated solution stream comprising the polymer are withdrawn from the separation step. At least a part of the vapour stream is passed to the first polymerisation reactor, to the second polymerisation reactor or to both.
    Type: Application
    Filed: December 21, 2016
    Publication date: December 27, 2018
    Inventors: Mohammad AL-HAJ ALI, Michiel BERGSTRA, Erik ERIKSSON, Guhan MATHIVANAN, Jukka RÄSÄNEN, Henry SLEIJSTER, Sameer VIJAY, Christof WURNITSCH, Samuli ZITTING, Vasileios KANELLOPOULOS, Jani AHO
  • Publication number: 20180355075
    Abstract: The present invention relates to a process for producing a polymer composition comprising the steps of: (A) polymerising, in a first polymerisation reactor in a first solvent,—a first olefin monomer having two or more carbon atoms, —in the presence of a first polymerisation catalyst for producing a first solution comprising a first polymer of the first olefin monomer and the first solvent; (B) withdrawing a first stream of the first solution from the first polymerisation reactor; (C) passing the first stream of the first solution into a first separator wherein a first liquid phase comprising the polymer and a first vapour phase coexist; (D) withdrawing a first vapour stream and a first concentrated solution stream comprising the polymer from the first separator; (E) passing at least a part of the first vapour stream to a first fractionator; (F) withdrawing a first overhead stream and a first bottom stream from the first fractionator; (G) recovering at least a part of the first overhead stream as a first recyc
    Type: Application
    Filed: December 21, 2016
    Publication date: December 13, 2018
    Inventors: Mohammad AL-HAJ ALI, Erik ERIKSSON, Guhan MATHIVANAN, Henry SLEIJSTER, Sameer VIJAY, Christof WURNITSCH, Samuli ZITTING
  • Publication number: 20180346612
    Abstract: The present invention is directed to a process for separating hydrocarbons from a solution comprising a polymer. The process comprises the steps of: (A) withdrawing a solution stream comprising the polymer from a first vessel; (B) passing the solution stream into a flash vessel; (C) spraying the solution stream into droplets in the first flash vessel thereby establishing a stream of droplets within the flash vessel. The solution forms a downwards falling film within the flash vessel.
    Type: Application
    Filed: March 24, 2016
    Publication date: December 6, 2018
    Inventors: Mohammad AL-HAJ ALI, Vasileios KANELLOPOULOS, Apostolos KRALLIS, Henry SLEIJSTER, Samuli ZITTING
  • Publication number: 20180327522
    Abstract: A process for withdrawing polyolefins from a solution polymerization reactor comprising: providing—a low pressure separator 1,—a washing column 2,—a withdrawal line 3 connecting the upper part of the low pressure separator and the washing column—a condenser 4,—a condenser-line 5 connecting the top part of the washing column and the condenser—optionally a recycle solvent vessel 6—optionally a solvent-vessel-line 7 connecting the condenser with the recycle solvent vessel—a reflux line 8 connecting the condenser and the upper part of the washing column or connecting the recycle solvent vessel and the upper part of the washing column—optionally a circulation line 9 fluidly connected to the middle part of the washing column and recycling line 10—a recycling line 10 connecting the bottom of the washing column and the upper part of the low pressure separator,—optionally a wash recycle heater 11 embedded into the recycling line 10—optionally a heater 12 embedded into the circulation line 9 (a) continuously withdrawin
    Type: Application
    Filed: December 21, 2016
    Publication date: November 15, 2018
    Inventors: Mohammad Al-Haj Ali, Erik Eriksson, Sameer Vijay, Guhan Mathivanan, Jukka Rasanen, Henry Sleijster, Christof Wurnitsch, Samuli Zitting
  • Publication number: 20180327529
    Abstract: An in-line blending process for polymers comprising: (a) providing two or more reactor-low pressure separator units (1,7) in parallel configuration, each reactor-low pressure separator unit comprising one reactor (2,8) fluidly connected to one low pressure separator (3,9) downstream and further a recycling line (5,11) connecting the low pressure separator (3,9) back to the corresponding reactor (2,8); (b) polymerizing olefm monomers having two or more carbon atoms in each of the reactors (2,8) in soltion polymerisation; (c) forming an unreduced reactor effluents stream including a homogenous fluid phase polymer-monomer-solvent mixture in each of the reactors (2,8), (d) passing the unreduced reactor effluents streams from each of the reactors (2,8) through the corresponding low pressure separators (3,9), whereby the temperature and pressure of the low pressure separators (3,9) is adjusted such that a liquid phase and a vapour phase are obtained, whereby yielding a polymer-enriched liquid phase and a polymer-le
    Type: Application
    Filed: December 21, 2016
    Publication date: November 15, 2018
    Inventors: Henry Sleijster, Mohammad Al-Haj Ali, Jukka Rasanen, Samuli Zitting, Michiel Bergstra, Erik Eriksson, Christof Wurnitsch, Guhan Mathivanan, Sameer Vijay, Vasileios Kanellopoulos, Jani Aho, Jouni Takakarhu
  • Publication number: 20180327518
    Abstract: A process for polymerising alpha-olefin monomers in a loop reactor comprising the steps of introducing a main feed stream (2) comprising at least one alpha-olefin monomer into the loop reactor (1); introducing a polymerisation catalyst into the loop reactor (1); polymerising the at least one alpha-olefin monomer in the presence of the polymerisation catalyst in the loop reactor (1) to produce a slurry comprising polyolefin particles; withdrawing an outlet stream (4) comprising at least a portion of the slurry from the loop reactor (1); adding a first feed stream (9) comprising the at least one alpha-olefin monomer and/or hydrogen to the outlet stream (4) to form a concentrator inlet stream (8); introducing the concentrator inlet stream (8) into a concentrator (5); withdrawing from the concentrator (5) an overflow stream (6) comprising the polyolefin particles, wherein the concentration of the polyolefin particles in the overflow stream (6) is smaller than in the concentrator inlet stream (8); withdrawing from
    Type: Application
    Filed: November 22, 2016
    Publication date: November 15, 2018
    Inventors: Kauno Alastalo, Mohammad Al-Haj Ali, Vasileios Kanellopoulos, Apostolos Krallis
  • Patent number: 9790290
    Abstract: An olefin polymerization process comprising polymerizing olefins in gas phase in a fluidized bed in the presence of an olefin polymerization catalyst in a polymerization reactor having a vertical body; a generally conical downwards tapering bottom zone; a generally cylindrical middle zone having a height to diameter ratio L/D of at least 4, above and connected to said bottom zone; and a generally conical upwards tapering top zone above and connected to said middle zone wherein (i) fluidization gas is introduced to the bottom zone of the reactor from where it passes upwards through the reactor; (ii) the fluidization gas is withdrawn from the top zone of the reactor, filtered, compressed, cooled and returned into the bottom zone of the reactor; (iii) a fluidized bed is formed within the reactor where the growing polymer particles are suspended in the upwards rising gas stream; and (iv) there is no fluidization grid in the reactor; characterized in that the gas velocity is maintained in the reactor such that NBr
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: October 17, 2017
    Assignee: Borealis AG
    Inventors: Vasileios Kanellopoulos, Apostolos Krallis, Mohammad Al-Haj Ali, Ravindra Tupe
  • Patent number: 9539556
    Abstract: The present invention is directed to a process for polymerizing olefins in gas phase in a fluidized bed reactor having a vertical body, a generally conical downwards tapering bottom zone, a generally cylindrical middle zone above the bottom zone, and a generally conical upwards tapering top zone above the middle zone. The fluidization gas is withdrawn from the top zone of the reactor, compressed and cooled so that a part of the fluidization gas condenses and then introduced to the bottom zone of the reactor. The bed is thus cooled upon evaporation of the liquid. There is no fluidization grid in the reactor.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: January 10, 2017
    Assignee: BOREALIS AG
    Inventors: Mohammad Al-Haj Ali, Apostolos Krallis, Vasileios Kanellopoulos
  • Publication number: 20160354747
    Abstract: The present invention is directed to a process for polymerizing olefins in gas phase in a fluidized bed reactor having a vertical body, a generally conical downwards tapering bottom zone, a generally cylindrical middle zone above the bottom zone, and a generally conical upwards tapering top zone above the middle zone. The fluidization gas is withdrawn from the top zone of the reactor, compressed and cooled so that a part of the fluidization gas condenses and then introduced to the bottom zone of the reactor. The bed is thus cooled upon evaporation of the liquid. There is no fluidization grid in the reactor.
    Type: Application
    Filed: February 27, 2015
    Publication date: December 8, 2016
    Inventors: Mohammad Al-Haj Ali, Apostolos Krallis, Vasileios Kanellopoulos
  • Publication number: 20160355613
    Abstract: An olefin polymerization process comprising polymerizing olefins in gas phase in a fluidized bed in the presence of an olefin polymerization catalyst in a polymerization reactor having a vertical body; a generally conical downwards tapering bottom zone; a generally cylindrical middle zone having a height to diameter ratio L/D of at least 4, above and connected to said bottom zone; and a generally conical upwards tapering top zone above and connected to said middle zone wherein (i) fluidization gas is introduced to the bottom zone of the reactor from where it passes upwards through the reactor; (ii) the fluidization gas is withdrawn from the top zone of the reactor, filtered, compressed, cooled and returned into the bottom zone of the reactor; (iii) a fluidized bed is formed within the reactor where the growing polymer particles are suspended in the upwards rising gas stream; and (iv) there is no fluidization grid in the reactor; characterized in that the gas velocity is maintained in the reactor such that NBr
    Type: Application
    Filed: February 27, 2015
    Publication date: December 8, 2016
    Inventors: Vasileios Kanellopoulos, Apostolos Krallis, Mohammad Al-Haj Ali, Ravindra Tupe
  • Patent number: 9382359
    Abstract: Reactor assembly for the production of polymers including a fluidized bed reactor and method for operating the reactor assembly.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 5, 2016
    Assignee: BOREALIS AG
    Inventors: Vasileios Kanellopoulos, Mohammad Al-Haj Ali
  • Publication number: 20150218295
    Abstract: Reactor assembly for the production of polymers including a fluidized bed reactor and method for operating the reactor assembly.
    Type: Application
    Filed: August 26, 2013
    Publication date: August 6, 2015
    Applicant: BOREALIS AG
    Inventors: Vasileios Kanellopoulos, Mohammad Al-Haj Ali