Patents by Inventor Mohammad RASHIDI

Mohammad RASHIDI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955172
    Abstract: An atomic orbital based memory storage is provided that includes a plurality of surface atoms forming dangling bonds (DBs) and a subset of the plurality of surface atoms passivated with spatial control to form covalent bonds with hydrogen, deuterium, or a combination thereof. The atomic orbital based data storage that can be rewritten and corrected as needed. The resulting data storage is also archival and capable of high data densities than any known storage as the data is retained in a binary storage or a given orbital being passivated or a dangling bond (DB). A method of forming and reading the atomic orbital data storage is also provided. The method including selectively removing covalent bonds to form dangling bonds (DBs) extending from a surface atom by hydrogen lithography and imaging the covalent bonds spatially to read the atomic orbital data storage.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: April 9, 2024
    Assignees: National Research Council of Canada, Quantum Silicon Inc., The Governors of the University of Alberta
    Inventors: Roshan Achal, Robert A. Wolkow, Jason Pitters, Martin Cloutier, Mohammad Rashidi, Marco Taucer, Taleana Huff
  • Patent number: 11635450
    Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: April 25, 2023
    Assignees: Quantum Silicon inc., National Research Council of Canada
    Inventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus, Jason Pitters, Roshan Achal
  • Publication number: 20230093537
    Abstract: An atomic orbital based memory storage is provided that includes a plurality of surface atoms forming dangling bonds (DBs) and a subset of the plurality of surface atoms passivated with spatial control to form covalent bonds with hydrogen, deuterium, or a combination thereof. The atomic orbital based data storage that can be rewritten and corrected as needed. The resulting data storage is also archival and capable of high data densities than any known storage as the data is retained in a binary storage or a given orbital being passivated or a dangling bond (DB). A method of forming and reading the atomic orbital data storage is also provided. The method including selectively removing covalent bonds to form dangling bonds (DBs) extending from a surface atom by hydrogen lithography and imaging the covalent bonds spatially to read the atomic orbital data storage.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 23, 2023
    Applicants: National Research Council of Canada, Quantum Silicon Inc., The Governors of the University of Alberta
    Inventors: Roshan Achal, Robert A. Wolkow, Jason Pitters, Martin Cloutier, Mohammad Rashidi, Marco Taucer, Taleana Huff
  • Patent number: 11557337
    Abstract: An atomic orbital based memory storage is provided that includes a plurality of surface atoms forming dangling bonds (DBs) and a subset of the plurality of surface atoms passivated with spatial control to form covalent bonds with hydrogen, deuterium, or a combination thereof. The atomic orbital based data storage that can be rewritten and corrected as needed. The resulting data storage is also archival and capable of high data densities than any known storage as the data is retained in a binary storage or a given orbital being passivated or a dangling bond (DB). A method of forming and reading the atomic orbital data storage is also provided. The method including selectively removing covalent bonds to form dangling bonds (DBs) extending from a surface atom by hydrogen lithography and imaging the covalent bonds spatially to read the atomic orbital data storage.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: January 17, 2023
    Assignees: National Research Council of Canada, Quantum Silicon Inc., The Governors of the University of Alberta
    Inventors: Roshan Achal, Robert A. Wolkow, Jason Pitters, Martin Cloutier, Mohammad Rashidi, Marco Taucer, Taleana Huff
  • Publication number: 20220155339
    Abstract: A method for assessing the quality of a tip of a scanning probe microscope (SPM) includes recording an SPM image, extracting a plurality of images of dangling bonds from the SPM image, feeding the extracted images of dangling bonds into a convolution neural network one image at a time, analyzing each of the plurality of images of dangling bonds using the convolution neural network, assigning each of the plurality of images of dangling bonds one of a sharp tip status or a double tip status, and determining whether the number of the plurality of images of dangling bonds of the SPM image assigned the double tip status exceeds a predetermined threshold. A method of automatically conditioning a tip of a scanning probe microscope (SPM) during imaging of a sample and a method of mass-producing atomistic quantum dots, qubits, or particular atom orbital occupation are also provided.
    Type: Application
    Filed: January 22, 2022
    Publication date: May 19, 2022
    Applicants: Quantum Silicon Inc., The Governors of the University of Alberta
    Inventors: Mohammad Rashidi, Robert Wolkow
  • Patent number: 11320455
    Abstract: A method for assessing the quality of a tip of a scanning probe microscope (SPM) includes recording an SPM image, extracting a plurality of images of dangling bonds from the SPM image, feeding the extracted images of dangling bonds into a convolution neural network one image at a time, analyzing each of the plurality of images of dangling bonds using the convolution neural network, assigning each of the plurality of images of dangling bonds one of a sharp tip status or a double tip status, and determining whether the number of the plurality of images of dangling bonds of the SPM image assigned the double tip status exceeds a predetermined threshold. A method of automatically conditioning a tip of a scanning probe microscope (SPM) during imaging of a sample and a method of mass-producing atomistic quantum dots, qubits, or particular atom orbital occupation are also provided.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: May 3, 2022
    Assignees: The Governors of the University of Alberta, Quantum Silicon Inc.
    Inventors: Mohammad Rashidi, Robert Wolkow
  • Publication number: 20220130033
    Abstract: A method for autonomously applying a dangling bond pattern to a substrate for atom scale device fabrication includes inputting the pattern, initiating a patterning process, scanning the substrate using a scanning probe microscope (SPM) to generate an SPM image of the substrate, feeding the SPM image into a trained convolution neural network (CNN), analyzing the SPM image using the CNN to identify substrate defects, determining a defect free substrate area for pattern application; and applying the pattern to the substrate in that area. An atom scale electronic component includes functional patches on a substrate and wires electrically connecting the functional patches. Training a CNN includes recording a Scanning Tunneling Microscope (STM) image of the substrate, extracting images of defects from the STM image, labeling pixel-wise the defect images, and feeding the extracted and labeled images of defects into a CNN to train the CNN for semantic segmentation.
    Type: Application
    Filed: February 14, 2020
    Publication date: April 28, 2022
    Applicant: Quantum Silicon Inc.
    Inventors: Mohammad Rashidi, Jeremiah Croshaw, Robert Wolkow
  • Patent number: 11258253
    Abstract: A control scheme for controlling power sharing among a plurality of parallel connected DC voltage sources is disclosed. Each of the DC voltage sources in parallel connection is an independent DC power system, which can be an suitable DC power supply that can provide power to a load. By way of example, the present disclosure describes a DC power system that includes a power source, an energy storage unit and a triple active bridge converter that provides power to the common load. Each independent DC power system has its own controller that shares a DC bus with the other DC power system controllers. Each controller executes non-transitory instructions to provide a reference voltage V* to its respective independent DC power system and implements a control scheme that changes the voltage reference to ensure that each independent DC power system only provides a certain share of the load current/power.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: February 22, 2022
    Assignee: EATON INTELLIGENT POWER LIMITED
    Inventors: Mohammad Rashidi, Mehdy Khayamy, Richard Fons
  • Publication number: 20210373045
    Abstract: A method for assessing the quality of a tip of a scanning probe microscope (SPM) includes recording an SPM image, extracting a plurality of images of dangling bonds from the SPM image, feeding the extracted images of dangling bonds into a convolution neural network one image at a time, analyzing each of the plurality of images of dangling bonds using the convolution neural network, assigning each of the plurality of images of dangling bonds one of a sharp tip status or a double tip status, and determining whether the number of the plurality of images of dangling bonds of the SPM image assigned the double tip status exceeds a predetermined threshold. A method of automatically conditioning a tip of a scanning probe microscope (SPM) during imaging of a sample and a method of mass-producing atomistic quantum dots, qubits, or particular atom orbital occupation are also provided.
    Type: Application
    Filed: March 19, 2019
    Publication date: December 2, 2021
    Applicants: Quantum Silicon Inc., The Governors of the University of Alberta
    Inventors: Mohammad Rashidi, Robert Wolkow
  • Publication number: 20210325429
    Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Applicants: Quantum Silicon Inc., National Research Council of Canada, The University of British Columbia
    Inventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus, Jason Pitters, Roshan Achal
  • Publication number: 20210272625
    Abstract: An atomic orbital based memory storage is provided that includes a plurality of surface atoms forming dangling bonds (DBs) and a subset of the plurality of surface atoms passivated with spatial control to form covalent bonds with hydrogen, deuterium, or a combination thereof. The atomic orbital based data storage that can be rewritten and corrected as needed. The resulting data storage is also archival and capable of high data densities than any known storage as the data is retained in a binary storage or a given orbital being passivated or a dangling bond (DB). A method of forming and reading the atomic orbital data storage is also provided. The method including selectively removing covalent bonds to form dangling bonds (DBs) extending from a surface atom by hydrogen lithography and imaging the covalent bonds spatially to read the atomic orbital data storage.
    Type: Application
    Filed: June 19, 2019
    Publication date: September 2, 2021
    Applicants: National Research Council of Canada, Quantum Silicon Inc., The Governors of the University of Alberta
    Inventors: Roshan Achal, Robert A. Wolkow, Jason Pitters, Martin Cloutier, Mohammad Rashidi, Marco Taucer, Taleana Huff
  • Patent number: 11047877
    Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 29, 2021
    Assignee: Quantum Silicon Inc.
    Inventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus
  • Publication number: 20210184115
    Abstract: A multiple-atom germanium quantum dot is provided that includes multiple dangling bonds on an otherwise H-terminated germanium surface, each dangling bonds having one of three ionization states of +1, 0 or ?1 and corresponding respectively to 0, 1, or 2 electrons in a dangling bond state. The dangling bonds together in close proximity and having the dangling bond states energetically in the germanium band gap with selective control of the ionization state of one of the dangling bonds. A new class of electronics elements is provided through the inclusion of at least one input and at least one output to the multiple dangling bonds. Selective modification or creation of a dangling bond is also detailed.
    Type: Application
    Filed: February 4, 2021
    Publication date: June 17, 2021
    Applicant: Quantum Silicon Inc.
    Inventors: Robert A. Wolkow, Roshan Achal, Taleana Huff, Hatem Labidi, Lucian Livadaru, Paul Piva, Mohammad Rashidi
  • Publication number: 20210091564
    Abstract: A control scheme for controlling power sharing among a plurality of parallel connected DC voltage sources is disclosed. Each of the DC voltage sources in parallel connection is an independent DC power system, which can be an suitable DC power supply that can provide power to a load. By way of example, the present disclosure describes a DC power system that includes a power source, an energy storage unit and a triple active bridge converter that provides power to the common load. Each independent DC power system has its own controller that shares a DC bus with the other DC power system controllers. Each controller executes non-transitory instructions to provide a reference voltage V* to its respective independent DC power system and implements a control scheme that changes the voltage reference to ensure that each independent DC power system only provides a certain share of the load current/power.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 25, 2021
    Inventors: Mohammad RASHIDI, Mehdy KHAYAMY, Richard FONS
  • Patent number: 10937959
    Abstract: A multiple-atom silicon quantum dot is provided that includes multiple dangling bonds on an otherwise H-terminated silicon surface, each dangling bonds having one of three ionization states of +1, 0 or ?1 and corresponding respectively to 0, 1, or 2 electrons in a dangling bond state. The dangling bonds together in close proximity and having the dangling bond states energetically in the silicon band gap with selective control of the ionization state of one of the dangling bonds. A new class of electronics elements is provided through the inclusion of at least one input and at least one output to the multiple dangling bonds. Selective modification or creation of a dangling bond is also detailed.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: March 2, 2021
    Assignee: QUANTUM SILICON INC.
    Inventors: Robert A. Wolkow, Roshan Achal, Taleana Huff, Hatem Labidi, Lucian Livadaru, Paul Piva, Mohammad Rashidi
  • Publication number: 20200249256
    Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 6, 2020
    Applicant: Quantum Silicon Inc.
    Inventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus
  • Publication number: 20200044150
    Abstract: A multiple-atom silicon quantum dot is provided that includes multiple dangling bonds on an otherwise H-terminated in silicon surface, each dangling bonds having one of three ionization states of +1, 0 or ?1 and corresponding respectively to 0, 1, or 2 electrons in a dangling bond state. The dangling bonds together in close proximity and having the dangling bond states energetically in the silicon band gap with selective control of the ionization state of one of the dangling bonds. A new class of electronics elements is provided through the inclusion of at least one input and at least one output to the multiple dangling bonds. Selective modification or creation of a dangling bond is also detailed.
    Type: Application
    Filed: July 19, 2017
    Publication date: February 6, 2020
    Inventors: Robert A. C, Roshan ACHAI, Taleana HUFF, Hatem LABIDI, Lucian LIVADARU, Paul PIVA, Mohammad RASHIDI