Patents by Inventor Mohammad Salah Attia

Mohammad Salah Attia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240018937
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments includes at least one shell member defining an airfoil surface. The rotor blade also includes pin joint(s) for connecting the first and second blade segments at the chord-wise joint. The pin joint(s) includes pin joint tube(s) received within the pin joint slot(s). The pin joint slot(s) are secured within a bearing block. Further, a gap is defined between the pin joint slot(s) and the bearing block. Moreover, the rotor blade includes a shim within the gap between the pin joint slot(s) and the bearing block so as to retain the pin joint slot(s) within the bearing block. In addition, the shim is constructed of a liquid material that hardens after being poured into the gap.
    Type: Application
    Filed: September 27, 2023
    Publication date: January 18, 2024
    Inventors: Rohit Agarwal, Andrew Mitchell Rodwell, Amir Riahi, Mohammad Salah Attia, Donald Joseph Kasperski, Jianqiang Chen
  • Patent number: 11828264
    Abstract: A rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments has at least one shell member defining an airfoil surface. The first blade segment includes a beam structure having a receiving end with at least one span-wise extending pin extending therefrom. The second blade segment includes a receiving section that receives the beam structure. The receiving section includes a chord-wise member having a pin joint slot defined therethrough. The pin joint slot receives the span-wise extending pin at the receiving end of the beam structure so as to secure the first and second blade segments together. Moreover, the chord-wise member, the pin joint slot, and/or the span-wise extending pin includes at least one compliant structure formed of a compliant material that allows a deformation thereof to follow a shear deformation of the rotor blade.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 28, 2023
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Andrew Mitchell Rodwell, Mohammad Salah Attia, Matthew Brian Dudon
  • Patent number: 11802542
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments includes at least one shell member defining an airfoil surface. The rotor blade also includes one or more pin joints for connecting the first and second blade segments at the chord-wise joint. The pin joint(s) includes one or more pin joint tubes received within the pin joint slot(s). The pin joint slot(s) are secured within a bearing block. Further, a gap is defined between the pin joint slot(s) and the bearing block. Moreover, the rotor blade includes a shim within the gap between the pin joint slot(s) and the bearing block so as to retain the pin joint slot(s) within the bearing block. In addition, the shim is constructed of a liquid material that hardens after being poured into the gap.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: October 31, 2023
    Assignee: General Electric Company
    Inventors: Rohit Agarwal, Andrew Mitchell Rodwell, Amir Riahi, Mohammad Salah Attia, Donald Joseph Kasperski, Jianqiang Chen
  • Publication number: 20220120255
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments includes at least one shell member defining an airfoil surface. The rotor blade also includes one or more pin joints for connecting the first and second blade segments at the chord-wise joint. The pin joint(s) includes one or more pin joint tubes received within the pin joint slot(s). The pin joint slot(s) are secured within a bearing block. Further, a gap is defined between the pin joint slot(s) and the bearing block. Moreover, the rotor blade includes a shim within the gap between the pin joint slot(s) and the bearing block so as to retain the pin joint slot(s) within the bearing block. In addition, the shim is constructed of a liquid material that hardens after being poured into the gap.
    Type: Application
    Filed: November 1, 2018
    Publication date: April 21, 2022
    Inventors: Rohit Agarwal, Andrew Mitchell Rodwell, Amir Riahi, Mohammad Salah Attia, Donald Joseph Kasperski, Jianqiang Chen
  • Publication number: 20210396207
    Abstract: A rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments has at least one shell member defining an airfoil surface. The first blade segment includes a beam structure having a receiving end with at least one span-wise extending pin extending therefrom. The second blade segment includes a receiving section that receives the beam structure. The receiving section includes a chord-wise member having a pin joint slot defined therethrough. The pin joint slot receives the span-wise extending pin at the receiving end of the beam structure so as to secure the first and second blade segments together. Moreover, the chord-wise member, the pin joint slot, and/or the span-wise extending pin includes at least one compliant structure formed of a compliant material that allows a deformation thereof to follow a shear deformation of the rotor blade.
    Type: Application
    Filed: November 1, 2018
    Publication date: December 23, 2021
    Inventors: Thomas Merzhaeuser, Andrew Mitchell Rodwell, Mohammad Salah Attia, Matthew Brian Dudon
  • Patent number: 9945354
    Abstract: A wind turbine blade includes a first shell member including a first mating surface along a first edge of the wind turbine blade. Also, the wind turbine blade includes a second shell member including a second mating surface along the first edge of the wind turbine blade, wherein the second mating surface is opposite to the first mating surface. Further, the wind turbine blade includes a bonding material disposed between the first mating surface and the second mating surface and configured to bond the first mating surface to the second mating surface. Moreover, the wind turbine blade includes a constrainer positioned at a desired bond line and coupled to one of the first mating surface and the second mating surface, wherein the constrainer is configured to restrict the bonding material from migrating into an interior cavity of the wind turbine blade.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: April 17, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sultan Shair, Thomas Merzhaeuser, Mohammad Salah Attia
  • Patent number: 9534580
    Abstract: A fluid turbine blade and method of fabrication are provided. The fluid turbine blade includes a centrally disposed longitudinal spar having a substantially circumferential cross section. The fluid turbine blade also includes at least one chord stiffener coupled to the longitudinal spar. The fluid turbine blade further includes a torsionally compliant segmented skin coupled to the at least one chord stiffener. The centrally disposed longitudinal spar and the torsionally compliant segmented skin are functionally decoupled to relieve the torsionally compliant segmented skin of one or more of a flapwise load condition, an edgewise load condition and a torsional load condition.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 3, 2017
    Assignee: General Electric Company
    Inventors: Chandra Sekher Yerramalli, Peggy Lynn Baehmann, Ken Ivcar Salas, Mohammad Salah Attia, Haifeng Zhao
  • Publication number: 20160115939
    Abstract: A wind turbine blade includes a first shell member including a first mating surface along a first edge of the wind turbine blade. Also, the wind turbine blade includes a second shell member including a second mating surface along the first edge of the wind turbine blade, wherein the second mating surface is opposite to the first mating surface. Further, the wind turbine blade includes a bonding material disposed between the first mating surface and the second mating surface and configured to bond the first mating surface to the second mating surface. Moreover, the wind turbine blade includes a constrainer positioned at a desired bond line and coupled to one of the first mating surface and the second mating surface, wherein the constrainer is configured to restrict the bonding material from migrating into an interior cavity of the wind turbine blade.
    Type: Application
    Filed: February 6, 2015
    Publication date: April 28, 2016
    Inventors: Sultan Shair, Thomas Merzhaeuser, Mohammad Salah Attia
  • Publication number: 20140241895
    Abstract: A fluid turbine blade and method of fabrication are provided. The fluid turbine blade includes a centrally disposed longitudinal spar having a substantially circumferential cross section. The fluid turbine blade also includes at least one chord stiffener coupled to the longitudinal spar. The fluid turbine blade further includes a torsionally compliant segmented skin coupled to the at least one chord stiffener. The centrally disposed longitudinal spar and the torsionally compliant segmented skin are functionally decoupled to relieve the torsionally compliant segmented skin of one or more of a flapwise load condition, an edgewise load condition and a torsional load condition.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Chandra Sekher Yerramalli, Peggy Lynn Baehmann, Ken Ivcar Salas, Mohammad Salah Attia, Haifeng Zhao