Patents by Inventor Mohsin Nawaz

Mohsin Nawaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11889252
    Abstract: A microphone device, an interface circuit and method are provided for managing a potential difference in sensitivity to a detected environmental stimulus associated with a sensor arrangement, where multiple electrical signals forming a differential signal can be produced, and the multiple electrical signals can be better balanced. Such an interface circuit, which can be used within a microphone device includes a bias voltage generator having one or more bias output voltage terminals, where a respective one of one or more DC bias voltages is produced at each of the bias output voltage terminals, for being coupled to a pair of transduction elements of a sensor. The interface circuit further includes an amplifier circuit having a first input terminal coupled to a first one of the pair of output terminals of the sensor and having a second input terminal coupled to a second one of the pair of output terminals of the sensor, the amplifier circuit producing a differential output signal.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: January 30, 2024
    Assignee: Knowles Electronics, LLC
    Inventors: Mark Niederberger, Thomas Gautschi, Michael Kuntzman, Mohsin Nawaz, Mohammad Shajaan, Christian Lillelund
  • Patent number: 11825266
    Abstract: Microphones including a housing defining a cavity, a plurality of conductors positioned within the cavity, at least one dielectric bar positioned within the cavity, and a transducer diaphragm. The conductors are structured to move in response to pressure changes while the housing remains fixed. A first conductor generates first electrical signals responsive to the pressure changes resulting from changes in an atmospheric pressure. A second conductor generates second electrical signals responsive to the pressure changes resulting from acoustic activity. The dielectric bar is fixed with respect to the cavity and remains fixed under the pressure changes. The dielectric bar is adjacent to at least one of the conductors. In response to an applied pressure that is an atmospheric pressure and/or an acoustic pressure, the transducer diaphragm exerts a force on the housing and displaces at least a portion of conductors with respect to the dielectric bar.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: November 21, 2023
    Assignee: Knowles Electronics, LLC
    Inventors: Mohsin Nawaz, Shubham Shubham, David Schafer, Michael Pedersen, Claus Furst, Mohammad Shajaan, Jay Cech
  • Publication number: 20230312335
    Abstract: A microelectromechanical system (MEMS) transducer includes a substrate and a pair of electrodes supported by the substrate. The pair of electrodes are configured as a bias electrode-sense electrode couple. A moveable electrode of the pair of electrodes is configured for vibrational movement in a first direction during excitation of the moveable electrode. The pair of electrodes are spaced apart from one another by a gap in a second direction perpendicular to the first direction. The moveable electrode includes a cantilevered end, the cantilevered end being warped to exhibit a resting deflection along the first direction.
    Type: Application
    Filed: May 23, 2023
    Publication date: October 5, 2023
    Inventors: Stephane Leahy, Wan-Thai Hsu, Mohsin Nawaz, Carly Stalder, Sahil Gupta, Meysam Daeichin
  • Patent number: 11697582
    Abstract: A microelectromechanical system (MEMS) transducer includes a substrate and a pair of electrodes supported by the substrate. The pair of electrodes are configured as a bias electrode-sense electrode couple. A moveable electrode of the pair of electrodes is configured for vibrational movement in a first direction during excitation of the moveable electrode. The pair of electrodes are spaced apart from one another by a gap in a second direction perpendicular to the first direction. The moveable electrode includes a cantilevered end, the cantilevered end being warped to exhibit a resting deflection along the first direction.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: July 11, 2023
    Assignee: Soundskrit Inc.
    Inventors: Stephane Leahy, Wan-Thai Hsu, Mohsin Nawaz, Carly Stalder, Sahil Gupta, Meysam Daeichin
  • Patent number: 11575996
    Abstract: A diaphragm for use in a transducer, the diaphragm including a flexible layer configured to deflect in response to changes in a differential pressure. The flexible layer includes a lattice grid. The lattice grid includes a first plurality of substantially elongate openings oriented along an axis and a second plurality of substantially elongate openings extending generally parallel to the axis. The second plurality of openings is substantially offset from the first plurality of openings in a direction substantially parallel to the axis. The first plurality of openings and the second plurality of openings define a first plurality of spaced apart grid beams extending between and substantially parallel to the axis and a second plurality of spaced apart grid beams extending substantially perpendicular to the axis. The second plurality of grid beams is configured to connect adjacent ones of the first plurality of grid beams.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: February 7, 2023
    Assignee: KNOWLES ELECTRONICS, LLC
    Inventors: Mohsin Nawaz, Shubham Shubham
  • Patent number: 11553283
    Abstract: The disclosure describes devices and methods of providing a DC bias voltage in a microphone assembly. Particularly, one implementation of such a device may be implemented on an integrated circuit that includes a direct current (DC) bias circuit. The DC bias circuit may be coupled to a transducer and configured to supply a DC bias signal to the transducer. The DC bias circuit includes a multi-stage charge pump and a low pass filter (LUFF) circuit. The multi-stage charge pump includes transistors that are fabricated with deep trench isolation (DTI).
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: January 10, 2023
    Assignee: Knowles Electronics, LLC
    Inventors: Jakob Toft, Mohammad Shajaan, Mohsin Nawaz, Michael Pedersen
  • Publication number: 20220396470
    Abstract: A microelectromechanical system (MEMS) transducer includes a substrate and a pair of electrodes supported by the substrate. The pair of electrodes are configured as a bias electrode-sense electrode couple. A moveable electrode of the pair of electrodes is configured for vibrational movement in a first direction during excitation of the moveable electrode. The pair of electrodes are spaced apart from one another by a gap in a second direction perpendicular to the first direction. The moveable electrode includes a cantilevered end, the cantilevered end being warped to exhibit a resting deflection along the first direction.
    Type: Application
    Filed: June 14, 2022
    Publication date: December 15, 2022
    Inventors: Stephane Leahy, Wan-Thai Hsu, Mohsin Nawaz, Carly Stalder, Sahil Gupta, Meysam Daeichin
  • Patent number: 11516597
    Abstract: A force feedback actuator includes a pair of electrodes and a dielectric member. The pair of electrodes are spaced apart from one another to form a gap. The dielectric member is disposed at least partially within the gap. The dielectric member includes a first portion having a first permittivity and a second portion having a second permittivity that is different from the first permittivity. The dielectric member and the pair of electrodes are configured for movement relative to each other.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: November 29, 2022
    Assignee: Knowles Electronics, LLC
    Inventors: Mohsin Nawaz, Stephen C. Thompson, Michael Pedersen, Peter V. Loeppert, Zouhair Sbiaa
  • Publication number: 20220369013
    Abstract: A microphone device, an interface circuit and method are provided for managing a potential difference in sensitivity to a detected environmental stimulus associated with a sensor arrangement, where multiple electrical signals forming a differential signal can be produced, and the multiple electrical signals can be better balanced. Such an interface circuit, which can be used within a microphone device includes a bias voltage generator having one or more bias output voltage terminals, where a respective one of one or more DC bias voltages is produced at each of the bias output voltage terminals, for being coupled to a pair of transduction elements of a sensor. The interface circuit further includes an amplifier circuit having a first input terminal coupled to a first one of the pair of output terminals of the sensor and having a second input terminal coupled to a second one of the pair of output terminals of the sensor, the amplifier circuit producing a differential output signal.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 17, 2022
    Inventors: Mark Niederberger, Thomas Gautschi, Michael Kuntzman, Mohsin Nawaz, Mohammad Shajaan, Christian Lillelund
  • Publication number: 20210345046
    Abstract: A diaphragm for use in a transducer, the diaphragm including a flexible layer configured to deflect in response to changes in a differential pressure. The flexible layer includes a lattice grid. The lattice grid includes a first plurality of substantially elongate openings oriented along an axis and a second plurality of substantially elongate openings extending generally parallel to the axis. The second plurality of openings is substantially offset from the first plurality of openings in a direction substantially parallel to the axis. The first plurality of openings and the second plurality of openings define a first plurality of spaced apart grid beams extending between and substantially parallel to the axis and a second plurality of spaced apart grid beams extending substantially perpendicular to the axis. The second plurality of grid beams is configured to connect adjacent ones of the first plurality of grid beams.
    Type: Application
    Filed: November 26, 2019
    Publication date: November 4, 2021
    Inventors: Mohsin Nawaz, Shubham Shubham
  • Publication number: 20210195342
    Abstract: The disclosure describes devices and methods of providing a DC bias voltage in a microphone assembly. Particularly, one implementation of such a device may be implemented on an integrated circuit that includes a direct current (DC) bias circuit. The DC bias circuit may be coupled to a transducer and configured to supply a DC bias signal to the transducer. The DC bias circuit includes a multi-stage charge pump and a low pass filter (LUFF) circuit. The multi-stage charge pump includes transistors that are fabricated with deep trench isolation (DTI).
    Type: Application
    Filed: December 22, 2020
    Publication date: June 24, 2021
    Applicant: Knowles Electronics, LLC
    Inventors: Jakob Toft, Mohammad Shajaan, Mohsin Nawaz, Michael Pedersen
  • Publication number: 20210176569
    Abstract: A force feedback actuator includes a pair of electrodes and a dielectric member. The pair of electrodes are spaced apart from one another to form a gap. The dielectric member is disposed at least partially within the gap. The dielectric member includes a first portion having a first permittivity and a second portion having a second permittivity that is different from the first permittivity. The dielectric member and the pair of electrodes are configured for movement relative to each other.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 10, 2021
    Inventors: Mohsin Nawaz, Stephen C. Thompson, Michael Pedersen, Peter V. Loeppert, Zouhair Sbiaa
  • Publication number: 20210029470
    Abstract: Microphones including a housing defining a cavity, a plurality of conductors positioned within the cavity, at least one dielectric bar positioned within the cavity, and a transducer diaphragm. The conductors are structured to move in response to pressure changes while the housing remains fixed. A first conductor generates first electrical signals responsive to the pressure changes resulting from changes in an atmospheric pressure. A second conductor generates second electrical signals responsive to the pressure changes resulting from acoustic activity. The dielectric bar is fixed with respect to the cavity and remains fixed under the pressure changes. The dielectric bar is adjacent to at least one of the conductors. In response to an applied pressure that is an atmospheric pressure and/or an acoustic pressure, the transducer diaphragm exerts a force on the housing and displaces at least a portion of conductors with respect to the dielectric bar.
    Type: Application
    Filed: March 20, 2019
    Publication date: January 28, 2021
    Applicant: Knowles Electronics LLC
    Inventors: Mohsin Nawaz, Shubham Shubham, David Schafer, Michael Pedersen, Claus Furst, Mohammad Shajaan, Jay Cech
  • Patent number: 10315912
    Abstract: A microelectromechanical system (MEMS) includes a diaphragm with a first surface and a second surface. The first surface is exposed to an environmental pressure. The second surface comprises a plurality of fingers extending from the second surface. The MEMS also includes a backplate comprising a plurality of voids. Each of the plurality of fingers extends into a respective one of the plurality of voids. The MEMS further includes an insulator between a portion of the diaphragm and a portion of the backplate. The diaphragm is configured to move with respect to the backplate in response to changes in the environmental pressure.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: June 11, 2019
    Assignee: Knowles Electronics, LLC
    Inventors: Mohsin Nawaz, Michael Kuntzman, Michael Pedersen
  • Publication number: 20180194615
    Abstract: A microelectromechanical system (MEMS) includes a diaphragm with a first surface and a second surface. The first surface is exposed to an environmental pressure. The second surface comprises a plurality of fingers extending from the second surface. The MEMS also includes a backplate comprising a plurality of voids. Each of the plurality of fingers extends into a respective one of the plurality of voids. The MEMS further includes an insulator between a portion of the diaphragm and a portion of the backplate. The diaphragm is configured to move with respect to the backplate in response to changes in the environmental pressure.
    Type: Application
    Filed: December 22, 2017
    Publication date: July 12, 2018
    Applicant: Knowles Electronics, LLC
    Inventors: Mohsin Nawaz, Michael Kuntzman, Michael Pedersen
  • Patent number: 9938133
    Abstract: According to an embodiment, a method of forming a MEMS transducer includes forming a transducer frame in a layer of monocrystalline silicon, where forming the transducer frame includes forming a support portion adjacent a cavity and forming a first set of comb-fingers extending from the support portion. The method of forming a MEMS transducer further includes forming a spring support from an anchor to the support portion and forming a second set of comb-fingers in the layer of monocrystalline silicon. The second set of comb-fingers is interdigitated with the first set of comb-fingers.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: April 10, 2018
    Assignee: INFINEON TECHNOLOGIES DRESDEN GMBH
    Inventors: Thoralf Kautzsch, Mohsin Nawaz, Alfons Dehe, Heiko Froehlich, Alessia Scire, Steffen Bieselt
  • Publication number: 20170297895
    Abstract: According to an embodiment, a method of forming a MEMS transducer includes forming a transducer frame in a layer of monocrystalline silicon, where forming the transducer frame includes forming a support portion adjacent a cavity and forming a first set of comb-fingers extending from the support portion. The method of forming a MEMS transducer further includes forming a spring support from an anchor to the support portion and forming a second set of comb-fingers in the layer of monocrystalline silicon. The second set of comb-fingers is interdigitated with the first set of comb-fingers.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: Thoralf Kautzsch, Mohsin Nawaz, Alfons Dehe, Heiko Froehlich, Alessia Scire, Steffen Bieselt
  • Patent number: 9728653
    Abstract: A MEMS device includes a membrane comprising a first plurality of fingers. A counter electrode arrangement includes a second plurality of fingers disposed in a interdigitated relationship with the first plurality of fingers of the membrane. A deflector is configured to deflect the membrane such that the first and second plurality of fingers are displaced in a position excluding maximum overlapping of surfaces of the fingers.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: August 8, 2017
    Assignee: Infineon Technologies AG
    Inventors: Alfons Dehe, Mohsin Nawaz
  • Patent number: 9083308
    Abstract: System and method for a microelectromechanical system (MEMS) is disclosed. A preferred embodiment comprises a first anchor region, a vibrating MEMS structure fixed to the first anchor region, a first electrode adjacent the vibrating MEMS structure, a second electrode adjacent the vibrating MEMS structure wherein the vibrating MEMS structure is arranged between the first and the second electrode.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: July 14, 2015
    Assignee: Infineon Technologies AG
    Inventors: Florian Schoen, Mohsin Nawaz, Mihail Sararoiu
  • Patent number: 9031266
    Abstract: An electrostatic loudspeaker comprises a membrane structure and an electrode structure. The membrane structure comprises a central membrane portion and a circumferential membrane portion. The electrode structure is configured to electrostatically interact with the membrane structure for causing a movement of the membrane structure along an axis of movement. The electrode structure comprises a circumferential electrode portion and an opening, the circumferential electrode portion being substantially aligned to the circumferential membrane portion and the opening being substantially aligned to the central membrane portion with respect to a direction parallel to the axis of movement. In an end position of the movement of the membrane structure, the central membrane portion is configured to extend at least partially through the opening. A method for operating an electrostatic loudspeaker and a method for manufacturing an electrostatic loudspeaker are also described.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: May 12, 2015
    Assignee: Infineon Technologies AG
    Inventors: Alfons Dehe, Mohsin Nawaz, Christoph Glacer