Patents by Inventor Mona Eissa
Mona Eissa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230245891Abstract: A system and method for growing fine grain polysilicon. In one example, the method of forming an integrated circuit includes forming a dielectric layer over a semiconductor substrate, and forming a polysilicon layer over the dielectric layer. The polysilicon layer is formed by a chemical vapor deposition process that includes providing a gas flow including disilane and hydrogen gas over the semiconductor substrate.Type: ApplicationFiled: January 31, 2022Publication date: August 3, 2023Inventors: Bhaskar Srinivasan, Pushpa Mahalingam, Mahalingam Nandakumar, Mona Eissa, Corinne Gagnet, Christopher Whitesell
-
Patent number: 10199573Abstract: A method of fabricating a semiconductor device includes aligning an alignment structure of a wafer to a direction of a magnetic field created by an external electromagnet and depositing a magnetic layer (e.g., NiFe) over the wafer in the presence of the magnetic field and while applying the magnetic field and maintaining a temperature of the wafer below 150° C. An insulation layer (e.g., AlN) is deposited on the first magnetic layer. The alignment structure of the wafer is again aligned to the direction of the magnetic field and a second magnetic layer is deposited on the insulation layer, in the presence of the magnetic field and while maintaining the temperature of the wafer below 150° C.Type: GrantFiled: May 25, 2017Date of Patent: February 5, 2019Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Mona Eissa, Dok Won Lee, Byron Shulver, Yousong Zhang
-
Patent number: 10017851Abstract: A method of magnetic forming an integrated fluxgate sensor includes providing a patterned magnetic core on a first nonmagnetic metal or metal alloy layer on a dielectric layer over a first metal layer that is on or in an interlevel dielectric layer (ILD) which is on a substrate. A second nonmagnetic metal or metal alloy layer is deposited including over and on sidewalls of the magnetic core. The second nonmagnetic metal or metal alloy layer is patterned, where after patterning the second nonmagnetic metal or metal alloy layer together with the first nonmagnetic metal or metal alloy layer encapsulates the magnetic core to form an encapsulated magnetic core. After patterning, the encapsulated magnetic core is magnetic field annealed using an applied magnetic field having a magnetic field strength of at least 0.1 T at a temperature of at least 150° C.Type: GrantFiled: December 22, 2015Date of Patent: July 10, 2018Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Dok Won Lee, Mona Eissa, Neal Thomas Murphy
-
Patent number: 10005662Abstract: A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.Type: GrantFiled: August 18, 2017Date of Patent: June 26, 2018Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Lee Alan Stringer, Mona Eissa, Byron J. R. Shulver, Sopa Chevacharoenkul, Mark R. Kimmich, Sudtida Lavangkul, Mark L. Jenson
-
Publication number: 20170346000Abstract: A method of fabricating a semiconductor device includes aligning an alignment structure of a wafer to a direction of a magnetic field created by an external electromagnet and depositing a magnetic layer (e.g., NiFe) over the wafer in the presence of the magnetic field and while applying the magnetic field and maintaining a temperature of the wafer below 150° C. An insulation layer (e.g., AlN) is deposited on the first magnetic layer. The alignment structure of the wafer is again aligned to the direction of the magnetic field and a second magnetic layer is deposited on the insulation layer, in the presence of the magnetic field and while maintaining the temperature of the wafer below 150° C.Type: ApplicationFiled: May 25, 2017Publication date: November 30, 2017Inventors: Mona Eissa, Dok Won Lee, Byron Shulver, Yousong Zhang
-
Publication number: 20170341934Abstract: A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.Type: ApplicationFiled: August 18, 2017Publication date: November 30, 2017Inventors: Lee Alan Stringer, Mona Eissa, Byron J.R. Shulver, Sopa Chevacharoenkul, Mark R. Kimmich, Sudtida Lavangkul, Mark L. Jenson
-
Patent number: 9771261Abstract: A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.Type: GrantFiled: March 17, 2016Date of Patent: September 26, 2017Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Lee Alan Stringer, Mona Eissa, Byron J. R. Shulver, Sopa Chevacharoenkul, Mark R. Kimmich, Sudtida Lavangkul, Mark L. Jenson
-
Publication number: 20170267521Abstract: A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.Type: ApplicationFiled: March 17, 2016Publication date: September 21, 2017Inventors: Lee Alan Stringer, Mona Eissa, Byron J.R. Shulver, Sopa Chevacharoenkul, Mark R. Kimmich, Sudtida Lavangkul, Mark L. Jenson
-
Publication number: 20170175259Abstract: A method of magnetic forming an integrated fluxgate sensor includes providing a patterned magnetic core on a first nonmagnetic metal or metal alloy layer on a dielectric layer over a first metal layer that is on or in an interlevel dielectric layer (ILD) which is on a substrate. A second nonmagnetic metal or metal alloy layer is deposited including over and on sidewalls of the magnetic core. The second nonmagnetic metal or metal alloy layer is patterned, where after patterning the second nonmagnetic metal or metal alloy layer together with the first nonmagnetic metal or metal alloy layer encapsulates the magnetic core to form an encapsulated magnetic core. After patterning, the encapsulated magnetic core is magnetic field annealed using an applied magnetic field having a magnetic field strength of at least 0.1 T at a temperature of at least 150° C.Type: ApplicationFiled: December 22, 2015Publication date: June 22, 2017Inventors: DOK WON LEE, MONA EISSA, NEAL THOMAS MURPHY
-
Publication number: 20130249096Abstract: A method for forming a through silicon via (TSV) in a substrate comprising: depositing a seed layer in a TSV hole; and annealing the seed layer.Type: ApplicationFiled: August 21, 2012Publication date: September 26, 2013Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Mona Eissa, Nicholas S. Dellas, Brian E. Goodlin
-
Patent number: 7268073Abstract: Methods (102) are presented for protecting copper structures (26) from corrosion in the fabrication of semiconductor devices (2), wherein a thin semiconductor or copper-semiconductor alloy corrosion protection layer (30) is formed on an exposed surface (26a) of a copper structure (26) prior to performance of metrology operations (206), so as to inhibit corrosion of the copper structure (26). All or a portion of the corrosion protection layer (30) is then removed (214) in forming an opening in an overlying dielectric (44) in a subsequent interconnect layer.Type: GrantFiled: November 10, 2004Date of Patent: September 11, 2007Assignee: Texas Instruments IncorporatedInventors: Deepak A. Ramappa, Mona Eissa, Christopher Lyle Borst, Ting Y. Tsui
-
Publication number: 20070181532Abstract: A post chemical-mechanical polishing cleaning method, comprising contacting a die with a first chemistry that removes at least some organic compounds and ions from a surface of the die. After contacting the die with the first chemistry, the method further comprises contacting the die with a second chemistry that removes at least some copper abutting the die surface. The method further comprises rinsing and drying the die.Type: ApplicationFiled: April 11, 2007Publication date: August 9, 2007Inventors: Mona EISSA, Nilesh Doke, Eden Zielinski, Gregory Shinn
-
Publication number: 20070117341Abstract: A method (100) of fabricating an electronic device (200) formed on a semiconductor wafer. The method forms a layer (215) of a first material in a fixed position relative to the wafer. The first material has a dielectric constant less than 3.6. The method also forms a photoresist layer in (216) a fixed position relative to the layer of the first material. The method also forms at least one void (220) through the layer of the first material in response to the photoresist layer. Further, the method subjects (106) the semiconductor wafer to a plasma which incorporates a gas which includes hydrogen so as to remove the photoresist layer.Type: ApplicationFiled: January 12, 2007Publication date: May 24, 2007Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Patricia Smith, Mona Eissa
-
Publication number: 20060099804Abstract: Methods (102) are presented for protecting copper structures (26) from corrosion in the fabrication of semiconductor devices (2), wherein a thin semiconductor or copper-semiconductor alloy corrosion protection layer (30) is formed on an exposed surface (26a) of a copper structure (26) prior to performance of metrology operations (206), so as to inhibit corrosion of the copper structure (26). All or a portion of the corrosion protection layer (30) is then removed (214) in forming an opening in an overlying dielectric (44) in a subsequent interconnect layer.Type: ApplicationFiled: November 10, 2004Publication date: May 11, 2006Inventors: Deepak Ramappa, Mona Eissa, Christopher Borst, Ting Tsui
-
Publication number: 20050250337Abstract: The invention describes a method for the selective dry etching of tantalum and tantalum nitride films. Tantalum nitride layers (30) are often used in semiconductor manufacturing. The semiconductor substrate is exposed to a reducing plasma chemistry which passivates any exposed copper (40). The tantalum or tantalum nitride films are selectively removed using an oxidizing plasma chemistry.Type: ApplicationFiled: July 12, 2005Publication date: November 10, 2005Inventors: Mona Eissa, Troy Yocum
-
Publication number: 20050247675Abstract: A post chemical-mechanical polishing cleaning method, comprising contacting a die with a first chemistry that removes at least some organic compounds and ions from a surface of the die. After contacting the die with the first chemistry, the method further comprises contacting the die with a second chemistry that removes at least some copper abutting the die surface. The method further comprises rinsing and drying the die.Type: ApplicationFiled: September 27, 2004Publication date: November 10, 2005Applicant: Texas Instruments IncorporatedInventors: Mona Eissa, Nilesh Doke, Eden Zielinski, Gregory Shinn
-
Publication number: 20050217694Abstract: An embodiment of the invention is an apparatus having a cleaning tank 2, a megasonic energy source 3, and an intake pipe 6 where a membrane contactor 9 is coupled to the intake pipe 6 to change the concentration of nitrogen gas in the deionized water 8 contained in intake pipe 6 to a range between 5.4% to 54% of saturation. Another embodiment is a method of changing the concentration of nitrogen gas in deionized water 8 to a range between 5.4% to 54% of saturation.Type: ApplicationFiled: May 25, 2005Publication date: October 6, 2005Inventors: Nilesh Doke, Mona Eissa, Jeffrey Hanson
-
Publication number: 20050215050Abstract: A method (100) of fabricating an electronic device (200) formed on a semiconductor wafer. The method forms a layer (215) of a first material in a fixed position relative to the wafer. The first material has a dielectric constant less than 3.6. The method also forms a photoresist layer in (216) a fixed position relative to the layer of the first material. The method also forms at least one void (220) through the layer of the first material in response to the photoresist layer. Further, the method subjects (106) the semiconductor wafer to a plasma which incorporates a gas which includes hydrogen so as to remove the photoresist layer.Type: ApplicationFiled: May 31, 2005Publication date: September 29, 2005Inventors: Patricia Smith, Mona Eissa
-
Patent number: 6806193Abstract: A method for preconditioning a CMP polishing pad and retaining ring prior to semiconductor wafer polishing. In the method of the present invention, the retaining ring is lowered to contact the rotating polishing pad, and a cleaning chemistry of ammonium citrate is applied to the pad. In an alternative embodiment, the cleaning chemistry comprises an aqueous solution of ammonium citrate, and a surfactant and/or copper inhibitor. After a sustained preconditioning period in which the retaining ring and polishing pad are polished, the pad is rinsed, lowering particulate buildup on the pad between wafer polishing steps, and bringing defect levels into an equilibrium state prior to each wafer polishing step.Type: GrantFiled: January 15, 2003Date of Patent: October 19, 2004Assignee: Texas Instruments IncorporatedInventors: Vincent C. Korthuis, Mona Eissa, Yaojian Leng, Syed Hamid
-
Publication number: 20040137739Abstract: A method for preconditioning a CMP polishing pad and retaining ring prior to semiconductor wafer polishing. In the method of the present invention, the retaining ring is lowered to contact the rotating polishing pad, and a cleaning chemistry of ammonium citrate is applied to the pad. In an alternative embodiment, the cleaning chemistry comprises an aqueous solution of ammonium citrate, and a surfactant and/or copper inhibitor. After a sustained preconditioning period in which the retaining ring and polishing pad are polished, the pad is rinsed, lowering particulate buildup on the pad between wafer polishing steps, and bringing defect levels into an equilibrium state prior to each wafer polishing step.Type: ApplicationFiled: January 15, 2003Publication date: July 15, 2004Applicant: Texas Instruments IncorporatedInventors: Vincent C. Korthuis, Mona Eissa, Yaojian Leng, Syed Hamid