Patents by Inventor Mona Eissa

Mona Eissa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230245891
    Abstract: A system and method for growing fine grain polysilicon. In one example, the method of forming an integrated circuit includes forming a dielectric layer over a semiconductor substrate, and forming a polysilicon layer over the dielectric layer. The polysilicon layer is formed by a chemical vapor deposition process that includes providing a gas flow including disilane and hydrogen gas over the semiconductor substrate.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Inventors: Bhaskar Srinivasan, Pushpa Mahalingam, Mahalingam Nandakumar, Mona Eissa, Corinne Gagnet, Christopher Whitesell
  • Patent number: 10199573
    Abstract: A method of fabricating a semiconductor device includes aligning an alignment structure of a wafer to a direction of a magnetic field created by an external electromagnet and depositing a magnetic layer (e.g., NiFe) over the wafer in the presence of the magnetic field and while applying the magnetic field and maintaining a temperature of the wafer below 150° C. An insulation layer (e.g., AlN) is deposited on the first magnetic layer. The alignment structure of the wafer is again aligned to the direction of the magnetic field and a second magnetic layer is deposited on the insulation layer, in the presence of the magnetic field and while maintaining the temperature of the wafer below 150° C.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: February 5, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mona Eissa, Dok Won Lee, Byron Shulver, Yousong Zhang
  • Patent number: 10017851
    Abstract: A method of magnetic forming an integrated fluxgate sensor includes providing a patterned magnetic core on a first nonmagnetic metal or metal alloy layer on a dielectric layer over a first metal layer that is on or in an interlevel dielectric layer (ILD) which is on a substrate. A second nonmagnetic metal or metal alloy layer is deposited including over and on sidewalls of the magnetic core. The second nonmagnetic metal or metal alloy layer is patterned, where after patterning the second nonmagnetic metal or metal alloy layer together with the first nonmagnetic metal or metal alloy layer encapsulates the magnetic core to form an encapsulated magnetic core. After patterning, the encapsulated magnetic core is magnetic field annealed using an applied magnetic field having a magnetic field strength of at least 0.1 T at a temperature of at least 150° C.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: July 10, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dok Won Lee, Mona Eissa, Neal Thomas Murphy
  • Patent number: 10005662
    Abstract: A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 26, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Lee Alan Stringer, Mona Eissa, Byron J. R. Shulver, Sopa Chevacharoenkul, Mark R. Kimmich, Sudtida Lavangkul, Mark L. Jenson
  • Publication number: 20170346000
    Abstract: A method of fabricating a semiconductor device includes aligning an alignment structure of a wafer to a direction of a magnetic field created by an external electromagnet and depositing a magnetic layer (e.g., NiFe) over the wafer in the presence of the magnetic field and while applying the magnetic field and maintaining a temperature of the wafer below 150° C. An insulation layer (e.g., AlN) is deposited on the first magnetic layer. The alignment structure of the wafer is again aligned to the direction of the magnetic field and a second magnetic layer is deposited on the insulation layer, in the presence of the magnetic field and while maintaining the temperature of the wafer below 150° C.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 30, 2017
    Inventors: Mona Eissa, Dok Won Lee, Byron Shulver, Yousong Zhang
  • Publication number: 20170341934
    Abstract: A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Inventors: Lee Alan Stringer, Mona Eissa, Byron J.R. Shulver, Sopa Chevacharoenkul, Mark R. Kimmich, Sudtida Lavangkul, Mark L. Jenson
  • Patent number: 9771261
    Abstract: A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: September 26, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Lee Alan Stringer, Mona Eissa, Byron J. R. Shulver, Sopa Chevacharoenkul, Mark R. Kimmich, Sudtida Lavangkul, Mark L. Jenson
  • Publication number: 20170267521
    Abstract: A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 21, 2017
    Inventors: Lee Alan Stringer, Mona Eissa, Byron J.R. Shulver, Sopa Chevacharoenkul, Mark R. Kimmich, Sudtida Lavangkul, Mark L. Jenson
  • Publication number: 20170175259
    Abstract: A method of magnetic forming an integrated fluxgate sensor includes providing a patterned magnetic core on a first nonmagnetic metal or metal alloy layer on a dielectric layer over a first metal layer that is on or in an interlevel dielectric layer (ILD) which is on a substrate. A second nonmagnetic metal or metal alloy layer is deposited including over and on sidewalls of the magnetic core. The second nonmagnetic metal or metal alloy layer is patterned, where after patterning the second nonmagnetic metal or metal alloy layer together with the first nonmagnetic metal or metal alloy layer encapsulates the magnetic core to form an encapsulated magnetic core. After patterning, the encapsulated magnetic core is magnetic field annealed using an applied magnetic field having a magnetic field strength of at least 0.1 T at a temperature of at least 150° C.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: DOK WON LEE, MONA EISSA, NEAL THOMAS MURPHY
  • Publication number: 20130249096
    Abstract: A method for forming a through silicon via (TSV) in a substrate comprising: depositing a seed layer in a TSV hole; and annealing the seed layer.
    Type: Application
    Filed: August 21, 2012
    Publication date: September 26, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mona Eissa, Nicholas S. Dellas, Brian E. Goodlin
  • Patent number: 7268073
    Abstract: Methods (102) are presented for protecting copper structures (26) from corrosion in the fabrication of semiconductor devices (2), wherein a thin semiconductor or copper-semiconductor alloy corrosion protection layer (30) is formed on an exposed surface (26a) of a copper structure (26) prior to performance of metrology operations (206), so as to inhibit corrosion of the copper structure (26). All or a portion of the corrosion protection layer (30) is then removed (214) in forming an opening in an overlying dielectric (44) in a subsequent interconnect layer.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: September 11, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Deepak A. Ramappa, Mona Eissa, Christopher Lyle Borst, Ting Y. Tsui
  • Publication number: 20070181532
    Abstract: A post chemical-mechanical polishing cleaning method, comprising contacting a die with a first chemistry that removes at least some organic compounds and ions from a surface of the die. After contacting the die with the first chemistry, the method further comprises contacting the die with a second chemistry that removes at least some copper abutting the die surface. The method further comprises rinsing and drying the die.
    Type: Application
    Filed: April 11, 2007
    Publication date: August 9, 2007
    Inventors: Mona EISSA, Nilesh Doke, Eden Zielinski, Gregory Shinn
  • Publication number: 20070117341
    Abstract: A method (100) of fabricating an electronic device (200) formed on a semiconductor wafer. The method forms a layer (215) of a first material in a fixed position relative to the wafer. The first material has a dielectric constant less than 3.6. The method also forms a photoresist layer in (216) a fixed position relative to the layer of the first material. The method also forms at least one void (220) through the layer of the first material in response to the photoresist layer. Further, the method subjects (106) the semiconductor wafer to a plasma which incorporates a gas which includes hydrogen so as to remove the photoresist layer.
    Type: Application
    Filed: January 12, 2007
    Publication date: May 24, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Patricia Smith, Mona Eissa
  • Publication number: 20060099804
    Abstract: Methods (102) are presented for protecting copper structures (26) from corrosion in the fabrication of semiconductor devices (2), wherein a thin semiconductor or copper-semiconductor alloy corrosion protection layer (30) is formed on an exposed surface (26a) of a copper structure (26) prior to performance of metrology operations (206), so as to inhibit corrosion of the copper structure (26). All or a portion of the corrosion protection layer (30) is then removed (214) in forming an opening in an overlying dielectric (44) in a subsequent interconnect layer.
    Type: Application
    Filed: November 10, 2004
    Publication date: May 11, 2006
    Inventors: Deepak Ramappa, Mona Eissa, Christopher Borst, Ting Tsui
  • Publication number: 20050250337
    Abstract: The invention describes a method for the selective dry etching of tantalum and tantalum nitride films. Tantalum nitride layers (30) are often used in semiconductor manufacturing. The semiconductor substrate is exposed to a reducing plasma chemistry which passivates any exposed copper (40). The tantalum or tantalum nitride films are selectively removed using an oxidizing plasma chemistry.
    Type: Application
    Filed: July 12, 2005
    Publication date: November 10, 2005
    Inventors: Mona Eissa, Troy Yocum
  • Publication number: 20050247675
    Abstract: A post chemical-mechanical polishing cleaning method, comprising contacting a die with a first chemistry that removes at least some organic compounds and ions from a surface of the die. After contacting the die with the first chemistry, the method further comprises contacting the die with a second chemistry that removes at least some copper abutting the die surface. The method further comprises rinsing and drying the die.
    Type: Application
    Filed: September 27, 2004
    Publication date: November 10, 2005
    Applicant: Texas Instruments Incorporated
    Inventors: Mona Eissa, Nilesh Doke, Eden Zielinski, Gregory Shinn
  • Publication number: 20050217694
    Abstract: An embodiment of the invention is an apparatus having a cleaning tank 2, a megasonic energy source 3, and an intake pipe 6 where a membrane contactor 9 is coupled to the intake pipe 6 to change the concentration of nitrogen gas in the deionized water 8 contained in intake pipe 6 to a range between 5.4% to 54% of saturation. Another embodiment is a method of changing the concentration of nitrogen gas in deionized water 8 to a range between 5.4% to 54% of saturation.
    Type: Application
    Filed: May 25, 2005
    Publication date: October 6, 2005
    Inventors: Nilesh Doke, Mona Eissa, Jeffrey Hanson
  • Publication number: 20050215050
    Abstract: A method (100) of fabricating an electronic device (200) formed on a semiconductor wafer. The method forms a layer (215) of a first material in a fixed position relative to the wafer. The first material has a dielectric constant less than 3.6. The method also forms a photoresist layer in (216) a fixed position relative to the layer of the first material. The method also forms at least one void (220) through the layer of the first material in response to the photoresist layer. Further, the method subjects (106) the semiconductor wafer to a plasma which incorporates a gas which includes hydrogen so as to remove the photoresist layer.
    Type: Application
    Filed: May 31, 2005
    Publication date: September 29, 2005
    Inventors: Patricia Smith, Mona Eissa
  • Patent number: 6806193
    Abstract: A method for preconditioning a CMP polishing pad and retaining ring prior to semiconductor wafer polishing. In the method of the present invention, the retaining ring is lowered to contact the rotating polishing pad, and a cleaning chemistry of ammonium citrate is applied to the pad. In an alternative embodiment, the cleaning chemistry comprises an aqueous solution of ammonium citrate, and a surfactant and/or copper inhibitor. After a sustained preconditioning period in which the retaining ring and polishing pad are polished, the pad is rinsed, lowering particulate buildup on the pad between wafer polishing steps, and bringing defect levels into an equilibrium state prior to each wafer polishing step.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: October 19, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Vincent C. Korthuis, Mona Eissa, Yaojian Leng, Syed Hamid
  • Publication number: 20040137739
    Abstract: A method for preconditioning a CMP polishing pad and retaining ring prior to semiconductor wafer polishing. In the method of the present invention, the retaining ring is lowered to contact the rotating polishing pad, and a cleaning chemistry of ammonium citrate is applied to the pad. In an alternative embodiment, the cleaning chemistry comprises an aqueous solution of ammonium citrate, and a surfactant and/or copper inhibitor. After a sustained preconditioning period in which the retaining ring and polishing pad are polished, the pad is rinsed, lowering particulate buildup on the pad between wafer polishing steps, and bringing defect levels into an equilibrium state prior to each wafer polishing step.
    Type: Application
    Filed: January 15, 2003
    Publication date: July 15, 2004
    Applicant: Texas Instruments Incorporated
    Inventors: Vincent C. Korthuis, Mona Eissa, Yaojian Leng, Syed Hamid